634 research outputs found

    Simulation of the long-term behaviour of a fault with two asperities

    Get PDF
    A system made of two sliding blocks coupled by a spring is employed to simulate the long-term behaviour of a fault with two asperities. An analytical solution is given for the motion of the system in the case of blocks having the same friction. An analysis of the phase space shows that orbits can reach a limit cycle only after entering a particular subset of the space. There is an infinite number of different limit cycles, characterized by the difference between the forces applied to the blocks or, as an alternative, by the recurrence pattern of block motions. These results suggest that the recurrence pattern of seismic events produced by the equivalent fault system is associated with a particular stress distribution which repeats periodically. Admissible stress distributions require a certain degree of inhomogeneity, which depends on the geometry of fault system. Aperiodicity may derive from stress transfers from neighboring faults

    Conditions for large earthquakes in a two-asperity fault model

    Get PDF
    Abstract. A fault with two asperities is modelled as a system made of two blocks coupled by a spring and sliding on a plane under the same values of static and dynamic friction. An analytical solution is given for the simultaneous motion of the blocks and the corresponding orbits are plotted in the phase space. It is proven that, whichever the initial state is, the long-term behaviour of the system is one of an infinite number of limit cycles, characterized by a particular pattern of forces. The region where the system is located when the blocks are stationary can be divided into narrow stripes corresponding to different orbits of the points belonging to them. This implies that the system is sensitive to perturbations and has relevant implications for a fault, which is subject to stress transfers from earthquakes generated by neighbouring faults. In this case, the fault may experience a larger earthquake, with the simultaneous failure of the two asperities, which restores a stress distribution compatible with periodic behaviour. The seismic moment associated with simultaneous asperity failure is always greater than the maximum value that can be released in a limit cycle. For strongly coupled asperities, the moment can be several times larger

    Polarised VEGFA Signalling at Vascular Blood–Neural Barriers

    Get PDF
    At blood–neural barriers, endothelial VEGFA signalling is highly polarised, with entirely different responses being triggered by luminal or abluminal stimulation. These recent findings were made in a field which is still in its mechanistic infancy. For a long time, endothelial polarity has intuitively been presumed, and likened to that of epithelial cells, but rarely demonstrated. In the cerebral and the retinal microvasculature, the uneven distribution of VEGF receptors 1 and 2, with the former predominant on the luminal and the latter on the abluminal face of the endothelium, leads to a completely polarised signalling response to VEGFA. Luminal VEGFA activates VEGFR1 homodimers and AKT, leading to a cytoprotective response, whilst abluminal VEGFA induces vascular leakage via VEGFR2 homodimers and p38. Whilst these findings do not provide a complete picture of VEGFA signalling in the microvasculature—there are still unclear roles for heterodimeric receptor complexes as well as co-receptors—they provide essential insight into the adaptation of vascular systems to environmental cues that are naturally different, depending on whether they are present on the blood or tissue side. Importantly, sided responses are not only restricted to VEGFA, but exist for other important vasoactive agents

    Fatigue life prediction of notched components: a comparison between the theory of critical distance and the classical stress-gradient approach

    Get PDF
    Abstract Fatigue life prediction for machine components is a key factor in the industrial world and several methods can be traced in technical literature to estimate life of notched components. The paper correlates the classical stress-gradient approach, here after called support factor (SF) method, proposed by Siebel, Neuber and Petersen with the modern theory of critical distance (TCD) approach by Tanaka and Taylor. On the one hand, the main asset of the SF method is that it relies only on the knowledge of the maximum stress and stress gradient in the hot spot. By contrast, the TCD needs the calculation of the stress distribution for a finite depth inside the material. On the other hand, the main drawback of the SF method is that the material parameter ρ* is available only for a limited collection of materials and moreover the experimental procedure to retrieve this parameter is not clearly defined in the technical literature. In order to overcome this limitation, the paper investigates the correlation between the material parameter ρ* and the critical distance L of the TCD by relying on a specific stress function. A comparison between the SF method and the TCD is then performed by considering three different benchmark geometries: a general V-notch in a plate, a pressure vessel and an industrial oleo-hydraulic distributor. Effective stresses are analytically retrieved and compared using both methods for the first two benchmarks and with the help of an elastic finite element analysis for the last one. The resus appear good in terms of fatigue life prediction, especially for the industrial case study

    The August 17, 1999 Izmit, Turkey, earthquake: slip distribution from dislocation modeling of DInSAR and surface offset

    Get PDF
    We show the results of application of Differential SAR Interferometry to the MW 7.4, August 17, 1999, Izmit earthquake, Western Turkey. The differential interferogram is obtained using an interferometric ERS2 ascending pair with a time interval of 35 days (August 13th - September 17th). The fringe pattern clearly defines the coseismic displacement field extended in an area of about 100 km N-S and 120 km E-W. The analysis of the interferogram shows the right-lateral strike-slip movement on the activated section of the North Anatolian fault system. The maximum SAR-detected displacement ranges between 117.6 cm and 134.4 cm in the proximity of GölcĂŒk. We invert SAR data for uniform dislocation on a single fault plane using a Montecarlo procedure, with the aim of testing a large set of a priori possible asperity distributions on the fault. We then use a forward modeling approach to evaluate the slip variability for the dislocation using additional constraints as surface offsets and seismicity distribution: in this case we allow unit cells to undergo different values of slip in order to refine the initial dislocation model. Misfits between SAR data and modeled slant range displacements are generally low for all our models (~ 12 cm). Our results indicate that slip is concentrated in the central-western part of the fault, in the upper 10-15 km, tapering to the fault tips. For the Izmit case, we note that a well constrained fault model can be obtained only integrating DInSAR data with additional observations. This is mainly due to an undersampling of the displacement field by DInSAR, caused by decorrelation and lack of image data

    Event-based Customization of Multi-tenant SaaS Using Microservices

    Get PDF
    Popular enterprise software such as ERP, CRM is now being made available on the Cloud in the multi-tenant Software as a Service (SaaS) model. The added values come from the ability of vendors to enable customer-specific business advantage for every different tenant who uses the same main enterprise software product. Software vendors need novel customization solutions for Cloud-based multi-tenant SaaS. In this paper, we present an event-based approach in a non-intrusive customization framework that can enable customization for multi-tenant SaaS and address the problem of too many API calls to the main software product. The experimental results on Microsoft’s eShopOnContainers show that our approach can empower an event bus with the ability to customize the flow of processing events, and integrate with tenant-specific microservices for customization. We have shown how our approach makes sure of tenant-isolation, which is crucial in practice for SaaS vendors. This direction can also reduce the number of API calls to the main software product, even when every tenant has different customization services.publishedVersio

    Endothelial Protease Activated Receptor 1 (PAR1) Signalling Is Required for Lymphocyte Transmigration across Brain Microvascular Endothelial Cells

    Get PDF
    Lymphocyte transendothelial migration (TEM) relies on ICAM-1 engagement on the luminal surface of the endothelial cells (ECs). In blood–brain barrier (BBB) ECs, ICAM-1 triggers TEM signalling, including through JNK MAP kinase and AMP-activated protein kinase (AMPK), which lead to the phosphorylation and internalisation of the adherens junction protein VE-cadherin. In addition to ICAM-1, G protein-coupled receptors (GPCRs) are also required for lymphocytes TEM across BBB ECs. Here, we investigated the role of protease activated GPCRs (PARs) and found a specific role for PAR1 in support of lymphocyte TEM across BBB ECs in vitro. PAR1 requirement for TEM was confirmed using protease inhibitors, specific small molecule and peptide antagonists, function blocking antibodies and siRNA-mediated knockdown. In BBB ECs, PAR1 stimulation led to activation of signalling pathways essential to TEM; notably involving JNK and endothelial nitric oxide synthase (eNOS), with the latter downstream of AMPK. In turn, nitric oxide production through eNOS was essential for TEM by modulating VE-cadherin on Y731. Collectively, our data showed that non-canonical PAR1 activation by a lymphocyte-released serine protease is required for lymphocyte TEM across the BBB in vitro, and that this feeds into previously established ICAM-1-mediated endothelial TEM signalling pathways

    AMP-activated protein kinase is a key regulator of acute neurovascular permeability

    Get PDF
    Many neuronal and retinal disorders are associated with pathological hyperpermeability of the microvasculature. We have used explants of rodent retinae to study acute neurovascular permeability and signal transduction and the role of AMP-activated protein kinase (AMPK). Following stimulation with either vascular endothelial growth factor (VEGF-A) or bradykinin (BK), AMPK was rapidly and strongly phosphorylated and acted as a key mediator of permeability downstream of Ca2+ Accordingly, AMPK agonists potently induced acute retinal vascular leakage. AMPK activation led to phosphorylation of endothelial nitric oxide synthase (eNOS), which in turn increased VE-cadherin phosphorylation on Y685. In parallel, AMPK also mediated phosphorylation of p38 MAP kinase and HSP27, indicating that it regulated paracellular junctions and cellular contractility, both previously associated with endothelial permeability. Endothelial AMPK provided a missing link in neurovascular permeability, connecting Ca2+ transients to the activation of eNOS and p38, irrespective of the permeability-inducing factor used. Collectively, we find that, due to its compatibility with small molecule antagonists/agonists and siRNA, the ex-vivo retina model constitutes a reliable tool to identify and study regulators and mechanism of acute neurovascular permeability

    An MRI volumetric study for leg muscles in congenital clubfoot

    Get PDF
    PURPOSE: To investigate both volume and length of the three muscle compartments of the normal and the affected leg in unilateral congenital clubfoot. METHODS: Volumetric magnetic resonance imaging (VMRI) of the anterior, lateral and postero-medial muscular compartments of both the normal and the clubfoot leg was obtained in three groups of seven patients each, whose mean age was, respectively, 4.8 months, 11.1 months and 4.7 years. At diagnosis, all the unilateral congenital clubfeet had a Pirani score ranging from 4.5 to 5.5 points, and all of them had been treated according to a strict Ponseti protocol. All the feet had percutaneous lengthening of the Achilles tendon. RESULTS: A mean difference in both volume and length was found between the three muscular compartments of the leg, with the muscles of the clubfoot side being thinner and shorter than those of the normal side. The distal tendon of the tibialis anterior, peroneus longus and triceps surae (Achilles tendon) were longer than normal on the clubfoot side. CONCLUSIONS: Our study shows that the three muscle compartments of the clubfoot leg are thinner and shorter than normal in the patients of the three groups. The difference in the musculature volume of the postero-medial compartment between the normal and the affected side increased nine-fold from age group 2 to 3, while the difference in length increased by 20 %, thus, showing that the muscles of the postero-medial compartment tend to grow in both thickness and length much less than the muscles of the other leg compartments
    • 

    corecore