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Abstract. A system made of two sliding blocks coupled by
a spring is employed to simulate the long-term behaviour of
a fault with two asperities. An analytical solution is given
for the motion of the system in the case of blocks having
the same friction. An analysis of the phase space shows that
orbits can reach a limit cycle only after entering a particular
subset of the space. There is an infinite number of different
limit cycles, characterized by the difference between the
forces applied to the blocks or, as an alternative, by the
recurrence pattern of block motions. These results suggest
that the recurrence pattern of seismic events produced by the
equivalent fault system is associated with a particular stress
distribution which repeats periodically. Admissible stress
distributions require a certain degree of inhomogeneity,
which depends on the geometry of fault system. Aperiodicity
may derive from stress transfers from neighboring faults.

1 Introduction

Spring-block systems are commonly used as low-order
analogs of seismic sources. A system made of a block pulled
by a spring was first proposed byBurridge and Knopoff
(1967). Due to non linear dependence of friction on the block
velocity, the system is nonlinear and dissipative.

The simplest friction law that generates the stick-slip
behaviour characteristic of seismic sources is a piecewise
constant function of slip rate, with friction assuming a static
or a dynamic value. More complicated friction laws are
obtained from laboratory experiments and have been used in
spring-block models (Byerlee, 1978; Dieterich, 1981; Ruina,
1983; Rice and Tse, 1986; Erickson et al., 2008). It has
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been shown that spring-block models can simulate several
features of seismic activity (Dieterich, 1972; Rundle and
Jackson, 1977; Cohen, 1977; Cao and Aki, 1984, 1986;
Gu et al., 1984; Carlson and Langer, 1989a,b; Carlson et
al., 1994). The discovery that simple models for seismic
sources may exhibit deterministic chaos has raised interest
for its implications in earthquake prediction (Keilis-Borok,
1990; Keilis-Borok and Kossobokov, 1990; Beltrami and
Mareschal, 1993).

Nussbaum and Ruina(1987) considered a two-block
model with spatial symmetry and found periodic behaviour.
Huang and Turcotte(1990a, 1992) and McCloskey and
Bean(1992) showed that a two-block model without spatial
symmetry yields chaotic behaviour.Huang and Turcotte
(1990b) showed that the chaotic behaviour may reproduce
some features of interacting fault systems. Two-block
systems were also considered byde Sousa Vieira(1995) and
He(2003).

In the present paper we consider a model made of two
coupled blocks, pulled at constant velocity on a rough plane.
The model is intended to simulate the behaviour of a fault
with two asperities (or of two coplanar fault segments)
subject to a constant tectonic strain rate. We assume that
the blocks are characterized by the same values of static and
dynamic friction.

Turcotte(1997) has shown numerically that this system
can exhibit limit cycles in the phase space, representing
the alternate motion of the blocks. Here we present an
analytical solution for the long-term behaviour of the system
and analyse the characteristics of limit cycles as functions of
the applied forces and the coupling degree. Inferences are
drawn about the long-term behaviour of the equivalent fault
system.
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2 Equations of motion

Consider two blocks having equal massm and placed on
a horizontal plane (Fig. 1a). Each block is connected by
a horizontal spring of rigidityK to a driving mechanism
moving at constant velocityv in the horizontal direction. The
blocks are connected to each other by a spring of rigidityKc.
We assume that the motion of each block is resisted by a
static frictionfs and a dynamic frictionfd.

We indicate with coordinates x and y the extensions of the
springs connecting respectively blocks 1 and 2 to the driver.
Following Turcotte (1997), we introduce nondimensional
coordinates and time

X =
Kx

fs
, Y =

Ky

fs
, T =

√
K

m
t (1)

We set

ε =
fd

fs
, α =

Kc

K
(2)

with 0< ε < 1 andα > 0. If f1 andf2 are the forces applied
to the blocks, we introduce nondimensional forces

F1 =
f1

fs
, F2 =

f2

fs
(3)

When the blocks are stationary, the equations of motion of
the system are then

Ẍ = 0, Ÿ = 0 (4)

where dots indicate differentiation with respect toT . When
the blocks are moving, the equations are

Ẍ+(1+α)X = ε+αY (5)

Ÿ +(1+α)Y = ε+αX (6)

The system having two degrees of freedom, the phase space
is a 4-manifoldS. The evolution of the system is described
by the orbit of the representative point inS.

For the largest part of time the system is stationary.
Therefore it is natural to assume as initial condition a state
with Ẋ = Ẏ = 0. This implies that the representative point
belongs to the planeXY . We shall study the projection of the
orbit in this plane. In view of the seismological application,
we assumeX ≥ 0, Y ≥ 0. SinceX andY vary in the range
[0, 1], the projection ofS is the unit square with vertices at
(0,0), (1,0), (1,1), (0,1).

3 Solution

In the planeXY the conditions for the motion of block 1 or 2
are represented respectively by the lines

Y =
1+α

α
X−

1

α
(7)

Y =
α

1+α
X+

1

1+α
(8)

that we name lines 1 and 2, respectively (Fig. 1b). The two
lines and the axesX and Y form a quadrilateralQ, with
vertices at(0,0),(A,0),(1,1),(0,A) and area

A =
1

1+α
(9)

HenceQ is the set of points corresponding to stationary
blocks: it coincides with the unit square whenα = 0,
it shrinks progressively asα increases and tends to the
diagonalY = X for α → ∞. The initial state is then a point
P0 = (X0,Y0) ∈ Q.

3.1 Stationary blocks

With initial conditions

X(0) = X0, Y (0) = Y0, Ẋ(0) = 0, Ẏ (0) = 0 (10)

Eqs. (4) have the solution

X = X0+V T, Y = Y0+V T (11)

whereV is the nondimensional velocity

V =

√
Km

fs
v (12)

Eqs. (11) are the parametric equations of the line

Y = X+p (13)

where

p = Y0−X0 (14)

Any segment of line (13) contained inQ is a set of states in
which both blocks are stationary. Since P0 ∈ Q, p can vary
within the range [−A, A]. Line (13) will intersect line 1 or 2
depending on the sign ofp.

According to (14), p expresses the difference between
the initial displacements of blocks. A more interesting
interpretation ofp is based on the forces applied to blocks.
From the equations of motion,

F1 = −X−α(X−Y ), F2 = −Y −α(Y −X) (15)

In the state (X0, Y0) the difference between them can be
written thanks to (14) as

1F = (1+2α)p (16)

Hencep is a measure of the difference between the forces
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acting on the two blocks. If P0 is close to the diagonalY = X

(hence|p| is small), the blocks are subject to forces of similar
strengths. If P0 is far from the diagonal and close to line 1
or 2, one of the blocks is subject to a much greater force
than the other. If P0 is in the vicinity of point (1,1), both
blocks are close to the onset conditions and the motion of
one of them will easily produce the motion of the other.

Speaking about faults, we can say that the magnitude ofp

is a measure of the inhomogeneity of the applied stress. The
inhomogeneity has two causes: the difference between the
amounts of slip of the two asperities (the termp in (16)) and
the effect of coupling (the term 2αp). This means that the
stress on the fault is fairly homogeneous when P0 is close to
the diagonal, while it is inhomogeneous when P0 is close to
line 1 or 2. In the first case the effect of tectonic loading is
prevailing, in the second case the effect of a dislocation on
the other is important.

3.2 Moving blocks

We solve the equations of motion in the case when only one
block slips at a time. The motion of block 1 is given by (5)
with initial conditions

X(0) = X̄, Ẋ(0) = 0 (17)

andY equal to a constant̄Y given by (7):

Ȳ =
1+α

α
X̄−

1

α
(18)

The solution is

X(T ) = X̄−
U

2

[
1−cos

(√
1+αT

)]
(19)

Ẋ(T ) = −
U

2

√
1+α sin

(√
1+αT

)
(20)

where

U = 2
1−ε

1+α
(21)

Equations (19) and (20) are the parametric equations of an
ellipse with minor axisU and major axis

√
1+αU . The

block stops at time

T0 =
π

√
1+α

(22)

when the representative point is(X̄−U,Ȳ ). This shows that
U is the final displacement of the block. Analogously, the
motion of block 2 is given by (6) with initial conditions

Y (0) = Ȳ , Ẏ (0) = 0 (23)

andX equal to a constant̄X given by (8):

X̄ =
1+α

α
Ȳ −

1

α
(24)

Fig. 1. (a)The two-block system;(b) projection of the phase space
in the planeXY and the quadrilateralQ (α = 1); (c) noteworthy
subsets ofQ: B1, B2, L1, L2, and the set C of limit cycles (ε = 0.7).

The solution is

Y (T ) = Ȳ −
U

2

[
1−cos

(√
1+αT

)]
(25)

Ẏ (T ) = −
U

2

√
1+α sin

(√
1+αT

)
(26)
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The block stops again atT = T0 when the representative
point is (X̄, Ȳ −U ). It can be seen that the values ofẊ andẎ

vary in the range [−1, 0]. HenceS is a hypercube with unit
edge. The conditionsX ≥ 0, Y ≥ 0 imply ε ≥ 1/2.

4 Limit cycles

There are two regions in the phase space from which the orbit
of the system enters immediately a limit cycle. They are
defined as follows. Let us call L1 the subset ofQ enclosed
between the lines

Y = X−a, Y = X−b (27)

and L2 the subset enclosed between the lines

Y = X+a, Y = X+b (28)

where

a =
α

1+2α
U, b =

1+α

1+2α
U (29)

Let P1 be the intersection point of line (13) with line 1 or 2
and P2 the arrest point of block 1 or 2, respectively. Subsets
L1 and L2 have the following properties:

1. if P0 ∈ L1, then P1 belongs to line 1 and P2 ∈ L2;

2. if P0 ∈ L2, then P1 belongs to line 2 and P2 ∈ L1.

The proof is immediate since a displacementU brings the
points belonging to the minor base of the trapezoid L1 onto
the major base of the trapezoid L2 and vice versa. Hence,
when the representative point of the system enters the region
L = L1 ∪ L2, it remains there forever, jumping an infinite
number of times from L1 to L2 and vice versa (Fig. 1c).

Consider a point P0 ∈ L1. The orbit of the system in the
planeXY is initially a segment of line (13) which intersects
line 1 at P1 = (X1,Y1). The orbit is then a segment of line
Y = Y1 until the arrest point P2 = (X2,Y2) of block 1. Then
the orbit is a segment of line

Y = X+p+U (30)

which intersects line 2 at point P3 = (X3,Y3). Finally, it is a
segment of lineX = X3 until the arrest point P4 = (X4,Y4)

of block 2. It is easy to prove that P4 belongs to line (13).
Therefore the system has entered a limit cycle. The same
conclusion is reached if P0 ∈ L2. We conclude that:

1. The projectionCp of a limit cycle in the planeXY is the
union of four rectilinear segments and has four singular
points. Their coordinates are given in Table 1.

2. All points P0 ∈ L with the same value ofp converge to
the same cycleCp.

3. Points P0 ∈ L1 characterized byp converge to the same
cycle as points P0 ∈ L2 characterized byp+U : hence
Cp = Cp+U .

Table 1. Coordinates of the singular points of a limit cycle.

(a) P0 ∈ L1

X1 = 1+αp, Y1 = 1+(1+α)p

X2 = 1+αp−U , Y2 = 1+(1+α)p

X3 = 1−(1+α)(p+U), Y3 = 1−α(p+U)

X4 = 1−(1+α)(p+U), Y4 = 1−αp−(1+α)U

(b) P0 ∈ L2

X1 = 1−(1+α)p, Y1 = 1−αp

X2 = 1−(1+α)p, Y2 = 1−αp−U

X3 = 1+α(p−U), Y3 = 1+(1+α)(p−U)

X4 = 1+αp−(1+α)U , Y4 = 1+(1+α)(p−U)

4. There is an infinite noncountable number of cyclesCp

with p ∈ [−b,−a]. The union of allCp is a setC ⊂ Q.

5. Each cycle represents the alternate motion of blocks.

If P0 /∈ L, orbits are in general more complicated: their
projection may be not entirely contained inQ and may be
the union of rectilinear and curvilinear segments. Blocks
can move simultaneously. It is evident from Fig. 1c that
this occurs when P0 belongs to the regions B1 or B2,
corresponding to−a < p < 0 and 0< p < a, respectively.
In fact, when P0 ∈ B1, the segment describing the motion of
block 1 intercepts line 2 and triggers the motion of block 2.
Analogously, when P0 ∈ B2, the motion of block 2 intercepts
line 1 and triggers the motion of block 1. Such orbits reach a
limit cycle only when they enter L. We do not consider them
in the present paper.

5 Recurrence periods

From the coordinates of singular points, it is easy to calculate
the time intervals elapsing between the motions of blocks.
We consider the casep < 0, including all possible limit
cycles. The interval between the motions of block 1 and
block 2 is

T12= −
(1+2α)p+αU

V
(31)

and that between the motions of blocks 2 and 1 is

T21=
(1+2α)p+(1+α)U

V
(32)

As p increases in the range [−b, −a], T12 decreases, while
T21 increases. The two intervals are equal whenp = −U/2.
If we neglect the duration of block motions, the interval
elapsing between two consecutive motions of the same block
is

1T = T12+T21=
U

V
(33)

Nonlin. Processes Geophys., 17, 777–784, 2010 www.nonlin-processes-geophys.net/17/777/2010/



M. Dragoni and S. Santini: Long-term behaviour of a fault 781

which is independent ofp and therefore is the same for all
cycles. If we define

r =
T12

T21
(34)

we can write

p = −
(1+α)r +α

(1+2α)(1+r)
U (35)

This shows that a limit cycle can be characterized byr

instead ofp. Thanks to (16) and (35), the difference between
forces when the system enters a limit cycle is

1F = −
(1+α)r +α

1+r
U (36)

This pattern repeats periodically in the cycle and character-
izes it. The intensities of forces at singular points are given
in Table 2.

In conclusion, in any limit cycle the recurrence period1T

of motions of each block is the same for both blocks, for
given values ofε andα. However the periodsT12 andT21
elapsing between the motion of one block and that of the
other depend on the shape of the cycle, which in turn depends
on the distribution of forces on the blocks.

If we suppose that the displacement of a block corresponds
to the slip of a fault asperity, we can calculate the seismic
moment releaseM(T ) as a function of time. Assume that
asperity 1 fails atT = 0 and the moment release associated
with the slip of each asperity isM0. The cumulative release
is then

M(T ) = M0

N∑
n=0

[H (T −n1T )+H (T −T12−n1T )] (37)

whereH(T ) is the Heaviside function andN is a very large
integer. In the particular caseT12= 0, (37) reduces to

M(T ) = 2M0

N∑
n=0

H (T −n1T ) (38)

representing a sequence of events with period1T and
seismic moment 2M0. In the caseT12 = 1T/2, (37) can be
written as

M(T ) = M0

N∑
n=0

[
H

(
T −2n

1T

2

)
+H

(
T −(2n+1)

1T

2

)]
(39)

which reduces to

M(T ) = M0

2N∑
m=0

H
(
T −m

1T

2

)
(40)

representing a sequence of events with period1T/2 and
momentM0.

Table 2. Intensity of forcesF1 andF2 at the singular points of a
limit cycle.

Point F1 F2

P1 −1 −1−(1+2α)p

P2 −1+(1+α)U −1−(1+α)p−α(p+U)

P3 −1+(1+2α)(p+U) −1
P4 −1+αp+(1+α)(p+U) −1+(1+α)U

6 Discussion and conclusions

Fault surfaces are characterized by an inhomogeneous
distribution of friction. Such a distribution is commonly
represented in the framework of an asperity model, which
distinguishes between high- and low-friction patches on the
fault (Lay et al., 1982). In addition, friction is governed by a
constitutive equation implying that friction may change with
time during fault slip and even when the fault is at rest.

We simplify this picture by considering a system having
a finite number of degrees of freedom, which includes
the essential properties of real faults but avoids the many
complications associated with them. This allows us to
follow the evolution of the system in the phase space and
to investigate its dynamical properties in the long term.

The system of two coupled blocks includes the essential
features of a fault with two asperities.Huang and Turcotte
(1990a) studied the case in which the blocks have different
frictions and found that the system exhibits chaotic behaviour
for certain values of the coupling constantα.

The analysis of the symmetric model presented in this
paper shows that the system exhibits a rich phenomenology
even in this simpler case. The evolution of the system
depends on a parameterp indicating the degree of
inhomogeneity of the applied stress. Only a limited range of
stress distributions allows the system to enter a limit cycle. In
this case the behaviour is periodic, with the alternate motion
of the two blocks, but an infinite variety of cases is possible.
Figure 2 shows three different limit cycles, corresponding
to r = 1, 1/5 and 0. Cases withr > 1 yield similar cycles
with the roles of the two blocks interchanged. If we set
α = 1, it follows A = 1/2, a = U/3 and b = 2U/3. The
cycles correspond top/U = −1/2, −7/18 and−1/3. We
take ε = 0.7 (Scholz, 1990), implying U = 0.3. Figure 3
shows the seismic moment releaseM and the forcesF1, F2
as functions of time for the three cases.

The case in which the block motions are equally spaced
in time (r = 1) corresponds to a fault with two asperities
slipping at equal time intervals and producing earthquakes
with momentM0 proportional toU and recurrence period
1T/2. The cases in which one interval is much smaller than
the other (r � 1 or r � 1) correspond to a fault producing a
sequence of two earthquakes (with momentM0 each) close
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Fig. 2. Three possible limit cycles of the system, for different values
of the ratior (α = 1, ε = 0.7).

Fig. 3. Seismic moment releaseM and forcesF1, F2 as functions
of time for the cycles shown in Fig. 2.

in time, followed by a long interseismic period, equal to
1T/(r +1) or r1T/(r +1), respectively. The case in which
one of the intervals is close to 0 corresponds to a fault where
the failure of an asperity is followed immediately by that of
the other, producing a single earthquake with moment 2M0
and recurrence period1T .
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Due to the dependence onp, the shape of limit cycles
depends on the stress distribution. The condition under
which fault slips are close in time takes place for relatively
small and relatively large values of|p|, while fault slips are
equally spaced in time when|p| assumes an intermediate
value. Hence the recurrence pattern of seismic events
depends on the stress distribution in the system. A certain
distribution of seismic events in time corresponds to a
stress distribution that repeats periodically: it is the stress
distribution that was present when the system entered the
limit cycle.

A critical parameter of the system is the coupling constant
α. In order to evaluate which values are appropriate for it,
we compare the spring-block model with a simple model
based on continuum mechanics. We consider a vertical,
plane fault embedded in a shear zone of widthd and rigidity
µ, subject to a constant strain rate (Dragoni and Tallarico,
1992). Two coplanar asperities having the same areaA are
placed at distanceR on the fault. In the point-like source
approximation, the shear stress transferred to one asperity by
slip 1u of the other asperity can be written as

σ ≈
µ1uA

R3
(41)

A comparison between the two models yields the correspon-
dence rules

Kc ≈
µA2

R3
, K ≈ µd (42)

whence

α ≈
A2

R3d
(43)

showing thatα is related to the geometry of the fault system.
The valueα = 1 adopted in the graphs corresponds toA=

107 m2, R = 104 m, d = 102 m.
As coupling increases, the areaA of Q decreases, hence

the set of states where both blocks are stationary is reduced.
It is easy to see that the area of L reduces more rapidly than
A. Hence, whenα is large, the initial state of the system is
more likely to be outside L, with the consequence that the
system will not enter immediately a limit cycle. At the same
time, an increasing coupling makes stress less homogeneous
according to (16) and the stress transferred from one asperity
to the other during a cycle greater. On the contrary, tectonic
stress is prevailing whenα is very small.

Observation shows that the seismogenic activity of a
fault is aperiodic and generates earthquakes of different
magnitudes. This behaviour can easily result from the
present model if we assume that the system is not isolated.
It is sufficient that stress is transferred to the system from
neighboring faults (in connection with earthquakes produced
by them) in order that the system moves each time from one
limit cycle to another having a different recurrence pattern.
In the block model, a small force perturbation on the blocks

may change the value ofp according to (16), thus addressing
the representative point to a different limit cycle with a
different value ofr: this is expressed by the derivativedr/dp.

In a fault system, the recurrence times of earthquakes
generated by a specific fault in the periodic, limit-cycle
regime are easily longer than the recurrence times of
perturbations by neighboring faults. If the fault model
considered here is subject to such perturbations, the fault
will enter a limit cycle, but will not remain long in it due to
intervening stress perturbations. Therefore periodicity could
not be observed in most cases.
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