26 research outputs found

    The Immune Checkpoint Landscape in Tumor Cells of Pancreatic Ductal Adenocarcinoma

    Get PDF
    Immune checkpoint therapy (ICT) has shown promising potential in the treatment of multiple solid tumors. However, the role of ICT in pancreatic ductal adenocarcinoma (PDAC) remains limited. Patterns of immune checkpoints (ICs) in PDAC represent the basis for establishing a potent ICT. The aim of this study is to create a profile of IC expression and its prognostic relevance in cancer cells of PDAC. Therefore, tumor cells from peripheral and central tissue microarray (TMA) spots from histologically confirmed PDAC of 68 patients after tumor resection were investigated in terms of expressions of TIM3, IDO, B7H4, LAG3, VISTA, and PD-L1 using immunohistochemistry. The presence of the respective ICs was compared to overall survival (OS). The presence of VISTA and PD-L1 significantly correlates with shorter OS (median OS: 22 months vs. 7 months and 22 months vs. 11 months, respectively, p 0.05). The analysis of OS of combined subgroups for VISTA and PD-L1 (VISTA and PD-L1 neg., VISTA pos. and PD-L1 neg., VISTA neg. and PD-L1 pos., and VISTA and PD-L1 pos.) yielded overall statistical significance difference (p = 0.02). These results suggest that the presence of VISTA and PD-L1 is of prognostic relevance and potentially qualifies them as targets for ICT

    Construction and validation of prognostic nomogram for metaplastic breast cancer

    Get PDF
    In this study we aimed to develop nomogram models for predicting the overall survival (OS) and cancer-specific survival (CSS) of patients with metaplastic breast cancer (MBC). Data of patients diagnosed with MBC from 1973 to 2015 were collected from the Surveillance, Epidemiology, and End Results (SEER) database. Univariate and multivariate Cox analyses were performed to identify independent prognostic factors for OS and CSS of MBC patients. The obtained prognostic variables were combined to construct nomogram models for predicting OS and CSS in patients with MBC. Model performance was evaluated using concordance index (C-index) and calibration plots. Data from 1125 patients were collected and divided into a training (750) and a validation (375) cohort. The multivariate Cox model identified age, TNM stage, tumor size, and radiotherapy as independent covariates associated with OS and CSS. The nomogram constructed based on these covariates demonstrated excellent accuracy in estimating 3-, and 5-year OS and CSS, with a C-index of 0.769 (95% CI, 0.731-0.808) for OS and 0.761 (95% CI, 0.713-0.809) for CSS in the training cohort. In the validation cohort, the nomogram-predicted C-index was 0.738 (95%CI, 0.676-0.800) for OS and 0.747 (95%CI, 0.667-0.827) for CSS. All calibration curves exhibited good consistency between predicted and actual survival. The nomogram models established in this study may enhance the accuracy of prognosis prediction and therefore may improve individualized assessment of survival risks and enable constructive therapeutic suggestions

    Rethinking the TNM Classification Regarding Direct Lymph Node Invasion in Pancreatic Ductal Adenocarcinoma

    Get PDF
    Mechanisms of lymph node invasion seem to play a prognostic role in pancreatic ductal adenocarcinoma (PDAC) after resection. However, the 8th edition of the TNM classification of the American Joint Committee on Cancer (AJCC) does not consider this. The aim of this study was to analyse the prognostic role of different mechanisms of lymph node invasion on PDAC. One hundred and twenty-two patients with resected PDAC were examined. We distinguished three groups: direct (per continuitatem, Nc) from the main tumour, metastasis (Nm) without any contact to the main tumour, and a mixed mechanism (Ncm). Afterwards, the prognostic power of the different groups was analysed concerning overall survival (OS). In total, 20 patients displayed direct lymph node invasion (Nc = 16.4%), 44 were classed as Nm (36.1%), and 21 were classed as Ncm (17.2%). The difference in OS was not statistically significant between N0 (no lymph node metastasis, n = 37) and Nc (p = 0.134), while Nm had worse OS than N0 (p < 0.001). Direct invasion alone had no statistically significant effect on OS (p = 0.885). Redefining the N0 stage by including Nc patients showed a more precise OS prediction among N stages (p = 0.001 vs. p = 0.002). Nc was more similar to N0 than to Nm; hence, we suggest a rethinking of TNM classification based on the mechanisms of lymph node metastases in PDAC. Overall, this novel classification is more precise

    Combined miRNA and SERS urine liquid biopsy for the point-of-care diagnosis and molecular stratification of bladder cancer

    Get PDF
    Background: Bladder cancer (BC) has the highest per-patient cost of all cancer types. Hence, we aim to develop a non-invasive, point-of-care tool for the diagnostic and molecular stratification of patients with BC based on combined microRNAs (miRNAs) and surface-enhanced Raman spectroscopy (SERS) profiling of urine. Methods: Next-generation sequencing of the whole miRNome and SERS profiling were performed on urine samples collected from 15 patients with BC and 16 control subjects (CTRLs). A retrospective cohort (BC = 66 and CTRL = 50) and RT-qPCR were used to confirm the selected differently expressed miRNAs. Diagnostic accuracy was assessed using machine learning algorithms (logistic regression, naive Bayes, and random forest), which were trained to discriminate between BC and CTRL, using as input either miRNAs, SERS, or both. The molecular stratification of BC based on miRNA and SERS profiling was performed to discriminate between high-grade and low-grade tumors and between luminal and basal types. Results: Combining SERS data with three differentially expressed miRNAs (miR-34a-5p, miR-205-3p, miR-210-3p) yielded an Area Under the Curve (AUC) of 0.92 +/- 0.06 in discriminating between BC and CTRL, an accuracy which was superior either to miRNAs (AUC = 0.84 +/- 0.03) or SERS data (AUC = 0.84 +/- 0.05) individually. When evaluating the classification accuracy for luminal and basal BC, the combination of miRNAs and SERS profiling averaged an AUC of 0.95 +/- 0.03 across the three machine learning algorithms, again better than miRNA (AUC = 0.89 +/- 0.04) or SERS (AUC = 0.92 +/- 0.05) individually, although SERS alone performed better in terms of classification accuracy. Conclusion: miRNA profiling synergizes with SERS profiling for point-of-care diagnostic and molecular stratification of BC. By combining the two liquid biopsy methods, a clinically relevant tool that can aid BC patients is envisaged

    MiR-543 regulates the epigenetic landscape of myelofibrosis by targeting TET1 and TET2

    Get PDF
    Myelofibros is (MF) is a myeloproliferative neoplasm characterized by cytopenia and extramedullary hematopoiesis, resulting in splenomegaly. Multiple pathological mechanisms (e.g., circulating cytokines and genetic alterations, such as JAK(V617F) mutation) have been implicated in the etiology of MF, but the molecular mechanism causing resistance to JAK(V617F) inhibitor therapy remains unknown. Among MF patients who were treated with the JAK inhibitor ruxolitinib, we compared noncoding RNA profiles of ruxolitinib therapy responders versus nonresponders and found miR-S43 was significantly upregulated in non responders. We validated these findings by reverse transcription-quantitative PCR. in this same cohort, in 2 additional independent MF patient cohorts from the United States and Romania, and in a JAK2(V617F) mouse model of MF. Both in vitro and in vivo models were used to determine the underlying molecular mechanism of miR-543 in MF. Here, we demonstrate that miR-543 targets the dioxygenases ten-eleven translocation 1 (TET1) and 2 (TET2) in patients and in vitro, causing increased levels of global 5-methylcytosine, while decreasing the acetylation of histone 3, STAT3, and tumor protein p53. Mechanistically, we found that activation of STAT3 by JAKs epigenetically controls miR-543 expression via binding the promoter region of miR-543. Furthermore, miR-543 upregulation promotes the expression of genes related to drug metabolism, including CYP3A4, which is involved in ruxolitinib metabolism. Our findings suggest miR-543 as a potentially novel biomarker for the prognosis of MF patients with a high risk of treatment resistance and as a potentially new target for the development of new treatment options

    17β-estradiol promotes extracellular vesicle release and selective miRNA loading in ERα-positive breast cancer

    Get PDF
    The causes and consequences of abnormal biogenesis of extracellular vesicles (EVs) are not yet well understood in malignancies, including in breast cancers (BCs). Given the hormonal signaling dependence of estrogen receptor–positive (ER+) BC, we hypothesized that 17β-estradiol (estrogen) might influence EV production and microRNA (miRNA) loading. We report that physiological doses of 17β-estradiol promote EV secretion specifically from ER+ BC cells via inhibition of miR-149-5p, hindering its regulatory activity on SP1, a transcription factor that regulates the EV biogenesis factor nSMase2. Additionally, miR-149-5p downregulation promotes hnRNPA1 expression, responsible for the loading of let-7’s miRNAs into EVs. In multiple patient cohorts, we observed increased levels of let-7a-5p and let-7d-5p in EVs derived from the blood of premenopausal ER+ BC patients, and elevated EV levels in patients with high BMI, both conditions associated with higher levels of 17β-estradiol. In brief, we identified a unique estrogen-driven mechanism by which ER+ BC cells eliminate tumor suppressor miRNAs in EVs, with effects on modulating tumor-associated macrophages in the microenvironment

    Anti–miR-93-5p therapy prolongs sepsis survival by restoring the peripheral immune response

    Get PDF
    Sepsis remains a leading cause of death for humans and currently has no pathogenesis-specific therapy. Hampered progress is partly due to a lack of insight into deep mechanistic processes. In the past decade, deciphering the functions of small noncoding miRNAs in sepsis pathogenesis became a dynamic research topic. To screen for new miRNA targets for sepsis therapeutics, we used samples for miRNA array analysis of PBMCs from patients with sepsis and control individuals, blood samples from 2 cohorts of patients with sepsis, and multiple animal models: mouse cecum ligation puncture–induced (CLP-induced) sepsis, mouse viral miRNA challenge, and baboon Gram+ and Gram– sepsis models. miR-93-5p met the criteria for a therapeutic target, as it was overexpressed in baboons that died early after induction of sepsis, was downregulated in patients who survived after sepsis, and correlated with negative clinical prognosticators for sepsis. Therapeutically, inhibition of miR-93-5p prolonged the overall survival of mice with CLP-induced sepsis, with a stronger effect in older mice. Mechanistically, anti–miR-93-5p therapy reduced inflammatory monocytes and increased circulating effector memory T cells, especially the CD4+ subset. AGO2 IP in miR-93–KO T cells identified important regulatory receptors, such as CD28, as direct miR-93-5p target genes. In conclusion, miR-93-5p is a potential therapeutic target in sepsis through the regulation of both innate and adaptive immunity, with possibly a greater benefit for elderly patients than for young patients

    The Long Noncoding RNA CCAT2 Induces Chromosomal Instability Through BOP1-AURKB Signaling

    Get PDF
    BACKGROUND &amp; AIMS: Chromosomal instability (CIN) is a carcinogenesis event that promotes metastasis and resistance to therapy by unclear mechanisms. Expression of the colon cancer-associated transcript 2 gene (CCAT2), which encodes a long noncoding RNA (lncRNA), associates with CIN, but little is known about how CCAT2 lncRNA regulates this cancer enabling characteristic.METHODS: We performed cytogenetic analysis of colorectal cancer (CRC) cell lines (HCT116, KM12C/SM, and HT29) overexpressing CCAT2 and colon organoids from C57BL/6N mice with the CCAT2 transgene and without (controls). CRC cells were also analyzed by immunofluorescence microscopy, gamma-H2AX, and senescence assays. CCAT2 transgene and control mice were given azoxymethane and dextran sulfate sodium to induce colon tumors. We performed gene expression array and mass spectrometry to detect downstream targets of CCAT2 lncRNA. We characterized interactions between CCAT2 with downstream proteins using MS2 pull-down, RNA immunoprecipitation, and selective 2'-hydroxyl acylation analyzed by primer extension analyses. Downstream proteins were overexpressed in CRC cells and analyzed for CIN. Gene expression levels were measured in CRC and non-tumor tissues from 5 cohorts, comprising more than 900 patients.RESULTS: High expression of CCAT2 induced CIN in CRC cell lines and increased resistance to 5-fluorouracil and oxaliplatin. Mice that expressed the CCAT2 transgene developed chromosome abnormalities, and colon organoids derived from crypt cells of these mice had a higher percentage of chromosome abnormalities compared with organoids from control mice. The transgenic mice given azoxymethane and dextran sulfate sodium developed more and larger colon polyps than control mice given these agents. Microarray analysis and mass spectrometry indicated that expression of CCAT2 increased expression of genes involved in ribosome biogenesis and protein synthesis. CCAT2 lncRNA interacted directly with and stabilized BOP1 ribosomal biogenesis factor (BOP1). CCAT2 also increased expression of MYC, which activated expression of BOP1. Overexpression of BOP1 in CRC cell lines resulted in chromosomal missegregation errors, and increased colony formation, and invasiveness, whereas BOP1 knockdown reduced viability. BOP1 promoted CIN by increasing the active form of aurora kinase B, which regulates chromosomal segregation. BOP1 was overexpressed in polyp tissues from CCAT2 transgenic mice compared with healthy tissue. CCAT2 lncRNA and BOP1 mRNA or protein were all increased in microsatellite stable tumors (characterized by CIN), but not in tumors with microsatellite instability compared with nontumor tissues. Increased levels of CCAT2 lncRNA and BOP1 mRNA correlated with each other and with shorter survival times of patients.CONCLUSIONS: We found that overexpression of CCAT2 in colon cells promotes CIN and carcinogenesis by stabilizing and inducing expression of BOP1 an activator of aurora kinase B. Strategies to target this pathway might be developed for treatment of patients with microsatellite stable colorectal tumors

    FuncPEP: A Database of Functional Peptides Encoded by Non-Coding RNAs

    No full text
    Non-coding RNAs (ncRNAs) are essential players in many cellular processes, from normal development to oncogenic transformation. Initially, ncRNAs were defined as transcripts that lacked an open reading frame (ORF). However, multiple lines of evidence suggest that certain ncRNAs encode small peptides of less than 100 amino acids. The sequences encoding these peptides are known as small open reading frames (smORFs), many initiating with the traditional AUG start codon but terminating with atypical stop codons, suggesting a different biogenesis. The ncRNA-encoded peptides (ncPEPs) are gradually becoming appreciated as a new class of functional molecules that contribute to diverse cellular processes, and are deregulated in different diseases contributing to pathogenesis. As multiple publications have identified unique ncPEPs, we appreciated the need for assembling a new web resource that could gather information about these functional ncPEPs. We developed FuncPEP, a new database of functional ncRNA encoded peptides, containing all experimentally validated and functionally characterized ncPEPs. Currently, FuncPEP includes a comprehensive annotation of 112 functional ncPEPs and specific details regarding the ncRNA transcripts that encode these peptides. We believe that FuncPEP will serve as a platform for further deciphering the biologic significance and medical use of ncPEPs. The link for FuncPEP database can be found at the end of the Introduction Section
    corecore