3,868 research outputs found

    Color Superconductivity in Compact Stars and Gamma Ray Bursts

    Get PDF
    We study the effects of color superconductivity on the structure and formation of compact stars. We show that it is possible to satisfy most of recent observational boundaries on masses and radii if a diquark condensate forms in a hybrid or a quark star. Moreover, we find that a huge amount of energy, of the order of 105310^{53} erg, can be released in the conversion from a (metastable) hadronic star into a (stable) hybrid or quark star, if the presence of a color superconducting phase is taken into account. Accordingly to the scenario proposed in Astrophys.J.586(2003)1250, the energy released in this conversion can power a Gamma Ray Burst. This mechanism can explain the recent observations indicating a delay, of the order of days or years, between a few Supernova explosions and the subsequent Gamma Ray Burst.Comment: 15 pages, 4 figures, 1 tabl

    Formation of Quark Phases in compact stars and their connection to Gamma-Ray-Bursts

    Full text link
    We analyse the occurrence of quiescent times in the temporal structure of the Gamma-Ray-Bursts (GRBs) light curves. We show that if a long quiescent time is present, it is possible to divide the total duration of GRBs into three periods: the pre-quiescence emission, the quiescent time and the post-quiescence emission. We then discuss a model of the GRBs inner engine based on the formation of quark phases during the life of an hadronic star. Within this model the pre-quiescence emission is interpreted as due to the deconfinement of quark inside an hadronic star and the formation of 2SC quark matter. The post-quiescence emission is due to the conversion of 2SC into the Color-Flavor-Locking (CFL) phase. The temporal delay between these two processes is connected with the nucleation time of the CFL phase in the 2SC phase and it can be associated with the observed quiescent times in the GRBs light curves. The stability of CFL cores in compact stars is also discussed.Comment: 6 pages, 3 figures, to appear in the proceedings of 3th International Conference on Nuclear Physics in Astrophysics (NPAIII), 26 - 31 March 2007 Dresden, German

    Synchrotron oscillation damping due to beam-beam collisions

    Get PDF
    In DA{\Phi}NE, the Frascati e+/e- collider, the crab waist collision scheme has been successfully implemented in 2008 and 2009. During the collision operations for Siddharta experiment, an unusual synchrotron damping effect has been observed. Indeed, with the longitudinal feedback switched off, the positron beam becomes unstable with beam currents in the order of 200-300 mA. The longitudinal instability is damped by bringing the positron beam in collision with a high current electron beam (~2A). Besides, we have observed a shift of \approx 600Hz in the residual synchrotron sidebands. Precise measurements have been performed by using both a commercial spectrum analyzer and the diagnostics capabilities of the DA{\Phi}NE longitudinal bunch-by-bunch feedback. This damping effect has been observed in DA{\Phi}NE for the first time during collisions with the crab waist scheme. Our explanation is that beam collisions with a large crossing angle produce a longitudinal tune shift and a longitudinal tune spread, providing Landau damping of synchrotron oscillations.Comment: 3 pages, 5 figures, talk presented to IPAC'10 - Kyoto - May 24-28 201

    Gravitational wave bursts induced by r-mode spin-down of hybrid stars

    Get PDF
    We show that sudden variations in the composition and structure of an hybrid star can be triggered by its rapid spin-down, induced by r-mode instabilities. The discontinuity of this process is due to the surface tension between hadronic and quark matter and in particular to the overpressure needed to nucleate new structures of quark matter in the mixed phase. The consequent mini-collapses in the star can produce highly energetic gravitational wave bursts. The possible connection between the predictions of this model and the burst signal found by EXPLORER and NAUTILUS detectors during the year 2001 is also investigated.Comment: 9 pages, 8 figures, revised version, to be published in Astronomy & Astrophysic

    Prospects for intermediate mass black hole binary searches with advanced gravitational-wave detectors

    Get PDF
    We estimated the sensitivity of the upcoming advanced, ground-based gravitational-wave observatories (the upgraded LIGO and Virgo and the KAGRA interferometers) to coalescing intermediate mass black hole binaries (IMBHB). We added waveforms modeling the gravitational radiation emitted by IMBHBs to detectors' simulated data and searched for the injected signals with the coherent WaveBurst algorithm. The tested binary's parameter space covers non-spinning IMBHBs with source-frame total masses between 50 and 1050 M⊙\text{M}_{\odot} and mass ratios between 1/61/6 and 1 \,. We found that advanced detectors could be sensitive to these systems up to a range of a few Gpc. A theoretical model was adopted to estimate the expected observation rates, yielding up to a few tens of events per year. Thus, our results indicate that advanced detectors will have a reasonable chance to collect the first direct evidence for intermediate mass black holes and open a new, intriguing channel for probing the Universe over cosmological scales.Comment: 9 pages, 4 figures, corrected the name of one author (previously misspelled

    Stress granules in Ciona robusta: molecular expression of tiar and ttp and early evidence of their gene expression under stress conditions induced by metals

    Get PDF
    Stress granules are non-membranous cytoplasmic foci composed of messengers (not translated), ribonucleoproteins, translation initiation components and other additional proteins, that represent a primary mechanism by which gene expression is rapidly modulated when cells are subjected to adverse environmental conditions. Very few works have been devoted to study the presence ofmolecular components of stress granules in invertebrate animals. In this work, we characterized, for the first time in the solitary ascidian Ciona robusta, the genetic sequences of two important protein components of stress granules, TIAR (TIA-1 related to proteins) and TTP (tristetraprolin), and carried out the first studies on their gene expression. The sequences characterized for tiar and ttp genes have allowed to start a study on the molecular evolution of these proteins in animals: for TIAR the obtained results are consistent with recent phylogenetic analysis that place tunicates as sister group of vertebrates, whereas the phylogenetic position of TTP remains still uncertain. The data on mRNA expression, provided by qRT-PCR analysis, are absolutely the first obtained in non-mammalian animals. As expected, the exposure to each metal (Cu, Zn and Cd) led to a generalized decrease in mRNA expression levels for both TIAR and TTP, suggesting that the metal accumulation induce acute stress and the inhibition of the transcription of tiar and ttp genes. The data presented here improved our knowledge about the molecular evolution anti-stress proteins in metazoans and emphasize the importance of the transcription of tiar and ttp genes, which represents an efficient physiological response allowing C. robusta to survive in the presence of metals in the marine environment (Supported by M.I.U.R. grant)

    Formation of quark phases in compact stars and SN explosion

    Get PDF
    We describe possible scenarios of quark deconfinement in compact stars and we analyze their astrophysical implications. The quark deconfinement process can proceed rapidly, as a strong deflagration, releasing a huge amount of energy in a short time and generating an extra neutrino burst. If energy is transferred efficiently to the surface, like e.g. in the presence of convective instabilities, this burst could contribute to revitalize a partially failed SN explosion. We discuss how the neutrino observations from SN1987A would fit in this scenario. Finally, we focus on the fate of massive and rapidly rotating progenitors, discussing possible time separations between the moment of the core collapse and the moment of quark deconfinement. This mechanism can be at the basis of the interpretation of gamma ray bursts in which lines associated with heavy elements are present in the spectrum.Comment: 9 pages, 3 figures, Proceedings "6th International Conference on Perspectives in Hadronic Physics", May 2008, Triest
    • …
    corecore