282 research outputs found

    Yoga respiratory training improves respiratory function and cardiac sympathovagal balance in elderly subjects: a randomised controlled trial

    Get PDF
    OBJECTIVES: Since ageing is associated with a decline in pulmonary function, heart rate variability and spontaneous baroreflex, and recent studies suggest that yoga respiratory exercises may improve respiratory and cardiovascular function, we hypothesised that yoga respiratory training may improve respiratory function and cardiac autonomic modulation in healthy elderly subjects. DESIGN: 76 healthy elderly subjects were enrolled in a randomised control trial in Brazil and 29 completed the study (age 68 \ub1 6 years, 34% males, body mass index 25 \ub1 3 kg/m\ub2). Subjects were randomised into a 4-month training program (2 classes/week plus home exercises) of either stretching (control, n=14) or respiratory exercises (yoga, n=15). Yoga respiratory exercises (Bhastrika) consisted of rapid forced expirations followed by inspiration through the right nostril, inspiratory apnoea with generation of intrathoracic negative pressure, and expiration through the left nostril. Pulmonary function, maximum expiratory and inspiratory pressures (PE(max) and PI(max), respectively), heart rate variability and blood pressure variability for spontaneous baroreflex determination were determined at baseline and after 4 months. RESULTS: Subjects in both groups had similar demographic parameters. Physiological variables did not change after 4 months in the control group. However, in the yoga group, there were significant increases in PE(max) (34%, p<0.0001) and PI(max) (26%, p<0.0001) and a significant decrease in the low frequency component (a marker of cardiac sympathetic modulation) and low frequency/high frequency ratio (marker of sympathovagal balance) of heart rate variability (40%, p<0.001). Spontaneous baroreflex did not change, and quality of life only marginally increased in the yoga group. CONCLUSION: Respiratory yoga training may be beneficial for the elderly healthy population by improving respiratory function and sympathovagal balance. Trial Registration CinicalTrials.gov identifier: NCT00969345; trial registry name: Effects of respiratory yoga training (Bhastrika) on heart rate variability and baroreflex, and quality of life of healthy elderly subjects

    Lack of reliable clinical predictors to identify obstructive sleep apnea in patients with hypertrophic cardiomyopathy

    Get PDF
    OBJECTIVE: Obstructive sleep apnea is common among patients with hypertrophic cardiomyopathy and may contribute to poor cardiovascular outcomes. However, obstructive sleep apnea is largely unrecognized in this population. We sought to identify the clinical predictors of obstructive sleep apnea among patients with hypertrophic cardiomyopathy. METHODS: Consecutive patients with hypertrophic cardiomyopathy were recruited from a tertiary University Hospital and were evaluated using validated sleep questionnaires (Berlin and Epworth) and overnight portable monitoring. Ninety patients (males, 51%; age, 46±15 years; body mass index, 26.6±4.9 kg/m2) were included, and obstructive sleep apnea (respiratory disturbance index ≥15 events/h) was present in 37 patients (41%). RESULTS: Compared with the patients without obstructive sleep apnea, patients with obstructive sleep apnea were older and had higher body mass index, larger waist circumference, larger neck circumference, and higher prevalence of atrial fibrillation. Excessive daytime sleepiness (Epworth scale) was low and similar in the patients with and without obstructive sleep apnea, respectively. The only predictors of obstructive sleep apnea (using a logistic regression analysis) were age ≥45 years (odds ratio [OR], 4.46; 95% confidence interval [CI 95%], 1.47-13.54; p = 0.008) and the presence of atrial fibrillation [OR, 5.37; CI 95%, 1.43-20.12; p = 0.013]. CONCLUSION: Consistent clinical predictors of obstructive sleep apnea are lacking for patients with hypertrophic cardiomyopathy, which suggests that objective sleep evaluations should be considered in this population, particularly among elderly patients with atrial fibrillation

    Modeling the scaling properties of human mobility

    Full text link
    While the fat tailed jump size and the waiting time distributions characterizing individual human trajectories strongly suggest the relevance of the continuous time random walk (CTRW) models of human mobility, no one seriously believes that human traces are truly random. Given the importance of human mobility, from epidemic modeling to traffic prediction and urban planning, we need quantitative models that can account for the statistical characteristics of individual human trajectories. Here we use empirical data on human mobility, captured by mobile phone traces, to show that the predictions of the CTRW models are in systematic conflict with the empirical results. We introduce two principles that govern human trajectories, allowing us to build a statistically self-consistent microscopic model for individual human mobility. The model not only accounts for the empirically observed scaling laws but also allows us to analytically predict most of the pertinent scaling exponents

    Predictors of 1-year compliance with adaptive servoventilation in patients with heart failure and sleep disordered breathing: preliminary data from the ADVENT-HF trial

    Get PDF
    Despite its effectiveness in suppressing sleep disordered breathing (SDB), positive airway pressure therapy (PAP) is not always well tolerated by patients and long-term adherence can be problematic. Recently, two multicentre, randomised clinical trials (RCTs) tested the effects of PAP for patients with cardiovascular disease and co-existing SDB on morbidity and mortality with negative outcomes [1, 2]. Relatively poor adherence to PAP therapy (mean 3.7 and 3.3 h·day-1, respectively) in these two trials might have contributed to their poor results. Indeed, higher PAP use per day is associated with better clinical outcomes than lower use [3]

    Perturbations of MicroRNA Function in Mouse Dicer Mutants Produce Retinal Defects and Lead to Aberrant Axon Pathfinding at the Optic Chiasm

    Get PDF
    During development axons encounter a variety of choice points where they have to make appropriate pathfinding decisions. The optic chiasm is a major decision point for retinal ganglion cell (RGC) axons en route to their target in order to ensure the correct wiring of the visual system. MicroRNAs (miRNAs) belong to the class of small non-coding RNA molecules and have been identified as important regulators of a variety of processes during embryonic development. However, their involvement in axon guidance decisions is less clear.We report here that the early loss of Dicer, an essential protein for the maturation of miRNAs, in all cells of the forming retina and optic chiasm leads to severe phenotypes of RGC axon pathfinding at the midline. Using a conditional deletion approach in mice, we find in homozygous Dicer mutants a marked increase of ipsilateral projections, RGC axons extending outside the optic chiasm, the formation of a secondary optic tract and a substantial number of RGC axons projecting aberrantly into the contralateral eye. In addition, the mutant mice display a microphthalmia phenotype.Our work demonstrates an important role of Dicer controlling the extension of RGC axons to the brain proper. It indicates that miRNAs are essential regulatory elements for mechanisms that ensure correct axon guidance decisions at the midline and thus have a central function in the establishment of circuitry during the development of the nervous system

    Consequences of Lineage-Specific Gene Loss on Functional Evolution of Surviving Paralogs: ALDH1A and Retinoic Acid Signaling in Vertebrate Genomes

    Get PDF
    Genome duplications increase genetic diversity and may facilitate the evolution of gene subfunctions. Little attention, however, has focused on the evolutionary impact of lineage-specific gene loss. Here, we show that identifying lineage-specific gene loss after genome duplication is important for understanding the evolution of gene subfunctions in surviving paralogs and for improving functional connectivity among human and model organism genomes. We examine the general principles of gene loss following duplication, coupled with expression analysis of the retinaldehyde dehydrogenase Aldh1a gene family during retinoic acid signaling in eye development as a case study. Humans have three ALDH1A genes, but teleosts have just one or two. We used comparative genomics and conserved syntenies to identify loss of ohnologs (paralogs derived from genome duplication) and to clarify uncertain phylogenies. Analysis showed that Aldh1a1 and Aldh1a2 form a clade that is sister to Aldh1a3-related genes. Genome comparisons showed secondarily loss of aldh1a1 in teleosts, revealing that Aldh1a1 is not a tetrapod innovation and that aldh1a3 was recently lost in medaka, making it the first known vertebrate with a single aldh1a gene. Interestingly, results revealed asymmetric distribution of surviving ohnologs between co-orthologous teleost chromosome segments, suggesting that local genome architecture can influence ohnolog survival. We propose a model that reconstructs the chromosomal history of the Aldh1a family in the ancestral vertebrate genome, coupled with the evolution of gene functions in surviving Aldh1a ohnologs after R1, R2, and R3 genome duplications. Results provide evidence for early subfunctionalization and late subfunction-partitioning and suggest a mechanistic model based on altered regulation leading to heterochronic gene expression to explain the acquisition or modification of subfunctions by surviving ohnologs that preserve unaltered ancestral developmental programs in the face of gene loss

    Characterisation of the Wildlife Reservoir Community for Human and Animal Trypanosomiasis in the Luangwa Valley, Zambia

    Get PDF
    Animal and human trypanosomiasis are constraints to both animal and human health in Sub-Saharan Africa, but there is little recent evidence as to how these parasites circulate in natural hosts in natural ecosystems. A cross-sectional survey of trypanosome prevalence in 418 wildlife hosts was conducted in the Luangwa Valley, Zambia, from 2005 to 2007. The overall prevalence in all species was 13.9%. Infection was significantly more likely to be detected in waterbuck, lion, greater kudu and bushbuck, with a clear pattern apparent of the most important hosts for each trypanosome species. Human infective Trypanosoma brucei rhodesiense parasites were identified for the first time in African buffalo and T. brucei s.l. in leopard. Variation in infection is demonstrated at species level rather than at family or sub-family level. A number of significant risk factors are shown to interact to influence infection rates in wildlife including taxonomy, habitat and blood meal preference. Trypanosoma parasites circulate within a wide and diverse host community in this bio-diverse ecosystem. Consistent land use patterns over the last century have resulted in epidemiological stability, but this may be threatened by the recent influx of people and domesticated livestock into the mid-Luangwa Valley

    Short-Term Effect of Different Teaching Methods on Nasopharyngeal Carcinoma for General Practitioners in Jakarta, Indonesia

    Get PDF
    In Indonesia, Nasopharyngeal Carcinoma (NPC) is the most frequent cancer of the head and neck region. At first presentation in the hospital most patients already have advanced NPC. Our previous study showed that general practitioners (GPs) working in Yogyakarta, Indonesia lack the knowledge necessary for early detection of NPC. By providing training on early symptoms of NPC we hope that the diagnosis and referral will occur at an earlier stage. Here we assess the current NPC knowledge levels of GPs in Jakarta, evaluate improvement after training, compare the effectiveness of two training formats, and estimate the loss of recall over a two week period
    corecore