402 research outputs found

    Precision glycan supplementation: A strategy to improve performance and intestinal health of laying hens in high‐stress commercial environments

    Get PDF
    In the dynamic world of animal production, many challenges arise in disease control, animal welfare and the need to meet antibiotic‐free demands. Emerging diseases have a significant impact on the poultry industry. Managing gut microbiota is an important determinant of poultry health and performance. Introducing precision glycans as feed additives adds another dimension to this complex environment. The glycans play pivotal roles in supporting gut health and immunological processes and are likely to limit antibiotic usage while enhancing intestinal well‐being and overall poultry performance. This study explores precision glycan product as a feed additive supplemented at a continuous dose of 900 g per tonne of feed, in a free‐range production system on a large commercial farm. Forty thousand 17‐week‐old pullets were randomly allocated to one of two separated sections of the production shed, with individual silos and egg‐collecting belts. The flock performance, gut microbiota and its functionality were analysed throughout the laying cycle until 72 weeks of age. The results demonstrated that introducing precision glycans improved a range of performance indicators, including reduced cumulative mortality, especially during a major smothering event, where the birds pile up until they suffocate. There was also significantly increased hen‐housed egg production, reduced gut dysbiosis score and undigested feed, increased number of goblet cells and improved feed conversion ratio. Additionally, microbiota analysis revealed significant changes in the composition of the gizzard, ileum content, ileum mucosa, and caecal and cloacal regions. Overall, the findings suggest that precision glycans have the potential to enhance poultry egg production in challenging farming environments

    Transcriptome analysis of pigeon milk production - role of cornification and triglyceride synthesis genes

    Get PDF
    BACKGROUND : The pigeon crop is specially adapted to produce milk that is fed to newly hatched young. The process of pigeon milk production begins when the germinal cell layer of the crop rapidly proliferates in response to prolactin, which results in a mass of epithelial cells that are sloughed from the crop and regurgitated to the young. We proposed that the evolution of pigeon milk built upon the ability of avian keratinocytes to accumulate intracellular neutral lipids during the cornification of the epidermis. However, this cornification process in the pigeon crop has not been characterised. RESULTS: We identified the epidermal differentiation complex in the draft pigeon genome scaffold and found that, like the chicken, it contained beta-keratin genes. These beta-keratin genes can be classified, based on sequence similarity, into several clusters including feather, scale and claw keratins. The cornified cells of the pigeon crop express several cornification-associated genes including cornulin, S100-A9 and A16-like, transglutaminase 6-like and the pigeon \u27lactating\u27 crop-specific annexin cp35. Beta-keratins play an important role in \u27lactating\u27 crop, with several claw and scale keratins up-regulated. Additionally, transglutaminase 5 and differential splice variants of transglutaminase 4 are up-regulated along with S100-A10. CONCLUSIONS: This study of global gene expression in the crop has expanded our knowledge of pigeon milk production, in particular, the mechanism of cornification and lipid production. It is a highly specialised process that utilises the normal keratinocyte cellular processes to produce a targeted nutrient solution for the young at a very high turnover

    Highly variable microbiota development in the chicken gastrointestinal tract

    Get PDF
    Studies investigating the role that complex microbiotas associated with animals and humans play in health and wellbeing have been greatly facilitated by advances in DNA sequencing technology. Due to the still relatively high sequencing costs and the expense of establishing and running animal trials and collecting clinical samples, most of the studies reported in the literature are limited to a single trial and relatively small numbers of samples. Results from different laboratories, investigating similar trials and samples, have often produced quite different pictures of microbiota composition. This study investigated batch to batch variations in chicken cecal microbiota across three similar trials, represented by individually analysed samples from 207 birds. Very different microbiota profiles were found across the three flocks. The flocks also differed in the efficiency of nutrient use as indicated by feed conversion ratios. In addition, large variations in the microbiota of birds within a single trial were noted. It is postulated that the large variability in microbiota composition is due, at least in part, to the lack of colonisation of the chicks by maternally derived bacteria. The high hygiene levels maintained in modern commercial hatcheries, although effective in reducing the burden of specific diseases, may have the undesirable effect of causing highly variable bacterial colonization of the gut. Studies in humans and other animals have previously demonstrated large variations in microbiota composition when comparing individuals from different populations and from different environments but this study shows that even under carefully controlled conditions large variations in microbiota composition still occur.Dragana Stanley, Mark S. Geier, Robert J. Hughes, Stuart E. Denman and Robert J. Moor

    Functional similarities between pigeon \u27milk\u27 and mammalian milk : induction of immune gene expression and modification of the microbiota

    Get PDF
    Pigeon ‘milk’ and mammalian milk have functional similarities in terms of nutritional benefit and delivery of immunoglobulins to the young. Mammalian milk has been clearly shown to aid in the development of the immune system and microbiota of the young, but similar effects have not yet been attributed to pigeon ‘milk’. Therefore, using a chicken model, we investigated the effect of pigeon ‘milk’ on immune gene expression in the Gut Associated Lymphoid Tissue (GALT) and on the composition of the caecal microbiota. Chickens fed pigeon ‘milk’ had a faster rate of growth and a better feed conversion ratio than control chickens. There was significantly enhanced expression of immune-related gene pathways and interferon-stimulated genes in the GALT of pigeon ‘milk’-fed chickens. These pathways include the innate immune response, regulation of cytokine production and regulation of B cell activation and proliferation. The caecal microbiota of pigeon ‘milk’-fed chickens was significantly more diverse than control chickens, and appears to be affected by prebiotics in pigeon ‘milk’, as well as being directly seeded by bacteria present in pigeon ‘milk’. Our results demonstrate that pigeon ‘milk’ has further modes of action which make it functionally similar to mammalian milk. We hypothesise that pigeon ‘lactation’ and mammalian lactation evolved independently but resulted in similarly functional products

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Comparison of fecal and cecal microbiotas reveals qualitative similarities but quantitative differences

    No full text
    Background: The majority of chicken microbiota studies have used the ceca as a sampling site due to the specific role of ceca in chicken productivity, health and wellbeing. However, sampling from ceca and other gastrointestinal tract sections requires the bird to be sacrificed. In contrast, fecal sampling does not require sacrifice and thus allows the same bird to be sampled repeatedly over time. This is a more meaningful and preferred way of sampling as the same animals can be monitored and tracked for temporal studies. The commonly used practice of selecting a subset of birds at each time-point for sacrifice and sampling introduces added variability due to the known animal to animal variation in microbiota. Results: Cecal samples and fecal samples via cloacal swab were collected from 163 birds across 3 replicate trials. DNA was extracted and 16S rRNA gene sequences amplified and pyrosequenced to determine and compare the phylogenetic profile of the microbiota within each sample. The fecal and cecal samples were investigated to determine to what extent the microbiota found in fecal samples represented the microbiota of the ceca. It was found that 88.55% of all operational taxonomic units (OTUs), containing 99.25% of all sequences, were shared between the two sample types, with OTUs unique for each sample type found to be very rare. There was a positive correlation between cecal and fecal abundance in the shared sequences, however the two communities differed significantly in community structure, represented as either alpha or beta diversity. The microbial populations present within the paired ceca of individual birds were also compared and shown to be similar. Conclusions: Fecal sample analysis captures a large percentage of the microbial diversity present in the ceca. However, the qualitative similarities in OTU presence are not a good representation of the proportions of OTUs within the microbiota from each sampling site. The fecal microbiota is qualitatively similar to cecal microbiota but quantitatively different. Fecal samples can be effectively used to detect some shifts and responses of cecal microbiota

    Highly variable microbiota development in the chicken gastrointestinal tract

    No full text
    Studies investigating the role that complex microbiotas associated with animals and humans play in health and wellbeing have been greatly facilitated by advances in DNA sequencing technology. Due to the still relatively high sequencing costs and the expense of establishing and running animal trials and collecting clinical samples, most of the studies reported in the literature are limited to a single trial and relatively small numbers of samples. Results from different laboratories, investigating similar trials and samples, have often produced quite different pictures of microbiota composition. This study investigated batch to batch variations in chicken cecal microbiota across three similar trials, represented by individually analysed samples from 207 birds. Very different microbiota profiles were found across the three flocks. The flocks also differed in the efficiency of nutrient use as indicated by feed conversion ratios. In addition, large variations in the microbiota of birds within a single trial were noted. It is postulated that the large variability in microbiota composition is due, at least in part, to the lack of colonisation of the chicks by maternally derived bacteria. The high hygiene levels maintained in modern commercial hatcheries, although effective in reducing the burden of specific diseases, may have the undesirable effect of causing highly variable bacterial colonization of the gut. Studies in humans and other animals have previously demonstrated large variations in microbiota composition when comparing individuals from different populations and from different environments but this study shows that even under carefully controlled conditions large variations in microbiota composition still occur

    Application of Phytogenic Liquid Supplementation in Soil Microbiome Restoration in Queensland Pasture Dieback

    No full text
    Pasture production is vital in cattle farming as it provides animals with food and nutrients. Australia, as a significant global beef producer, has been experiencing pasture dieback, a syndrome of deteriorating grassland that results in the loss of grass and the expansion of weeds. Despite two decades of research and many remediation attempts, there has yet to be a breakthrough in understanding the causes or mechanisms involved. Suggested causes of this phenomenon include soil and plant microbial pathogens, insect infestation, extreme heat stress, radiation, and others. Plants produce a range of phytomolecules with antifungal, antibacterial, antiviral, growth-promoting, and immunostimulant effects to protect themselves from a range of environmental stresses. These products are currently used more in human and veterinary health than in agronomy. In this study, we applied a phytogenic product containing citric acid, carvacrol, and cinnamaldehyde, to investigate its ability to alleviate pasture dieback. The phytogenic liquid-based solution was sprayed twice, one week apart, at 5.4 L per hectare. The soil microbial community was investigated longitudinally to determine long-term effects, and pasture productivity and plant morphometric improvements were explored. The phytogenic liquid significantly improved post-drought recovery of alpha diversity and altered temporal and spatial change in the community. The phytogenic liquid reduced biomarker genera associated with poor and polluted soils and significantly promoted plant and soil beneficial bacteria associated with plant rhizosphere and a range of soil benefits. Phytogenic liquid application produced plant morphology improvements and a consistent enhancement of pasture productivity extending beyond 18 months post-application. Our data show that phytogenic products used in the livestock market as an alternative to antibiotics may also have a beneficial role in agriculture, especially in the light of climate change-related soil maintenance and remediation
    corecore