25 research outputs found
Sequential Broadening of CTL Responses in Early HIV-1 Infection Is Associated with Viral Escape
BACKGROUND: Antigen-specific CTL responses are thought to play a central role in containment of HIV-1 infection, but no consistent correlation has been found between the magnitude and/or breadth of response and viral load changes during disease progression. METHODS AND FINDINGS: We undertook a detailed investigation of longitudinal CTL responses and HIV-1 evolution beginning with primary infection in 11 untreated HLA-A2 positive individuals. A subset of patients developed broad responses, which selected for consensus B epitope variants in Gag, Pol, and Nef, suggesting CTL-induced adaptation of HIV-1 at the population level. The patients who developed viral escape mutations and broad autologous CTL responses over time had a significantly higher increase in viral load during the first year of infection compared to those who did not develop viral escape mutations. CONCLUSIONS: A continuous dynamic development of CTL responses was associated with viral escape from temporarily effective immune responses. Our results suggest that broad CTL responses often represent footprints left by viral CTL escape rather than effective immune control, and help explain earlier findings that fail to show an association between breadth of CTL responses and viral load. Our results also demonstrate that CTL pressures help to maintain certain elements of consensus viral sequence, which likely represent viral escape from common HLA-restricted CTL responses. The ability of HIV to evolve to escape CTL responses restricted by a common HLA type highlights the challenges posed to development of an effective CTL-based vaccine
Phylogenetic Dependency Networks: Inferring Patterns of CTL Escape and Codon Covariation in HIV-1 Gag
HIV avoids elimination by cytotoxic T-lymphocytes (CTLs) through the evolution of escape mutations. Although there is mounting evidence that these escape pathways are broadly consistent among individuals with similar human leukocyte antigen (HLA) class I alleles, previous population-based studies have been limited by the inability to simultaneously account for HIV codon covariation, linkage disequilibrium among HLA alleles, and the confounding effects of HIV phylogeny when attempting to identify HLA-associated viral evolution. We have developed a statistical model of evolution, called a phylogenetic dependency network, that accounts for these three sources of confounding and identifies the primary sources of selection pressure acting on each HIV codon. Using synthetic data, we demonstrate the utility of this approach for identifying sites of HLA-mediated selection pressure and codon evolution as well as the deleterious effects of failing to account for all three sources of confounding. We then apply our approach to a large, clinically-derived dataset of Gag p17 and p24 sequences from a multicenter cohort of 1144 HIV-infected individuals from British Columbia, Canada (predominantly HIV-1 clade B) and Durban, South Africa (predominantly HIV-1 clade C). The resulting phylogenetic dependency network is dense, containing 149 associations between HLA alleles and HIV codons and 1386 associations among HIV codons. These associations include the complete reconstruction of several recently defined escape and compensatory mutation pathways and agree with emerging data on patterns of epitope targeting. The phylogenetic dependency network adds to the growing body of literature suggesting that sites of escape, order of escape, and compensatory mutations are largely consistent even across different clades, although we also identify several differences between clades. As recent case studies have demonstrated, understanding both the complexity and the consistency of immune escape has important implications for CTL-based vaccine design. Phylogenetic dependency networks represent a major step toward systematically expanding our understanding of CTL escape to diverse populations and whole viral genes
The Genealogical Population Dynamics of HIV-1 in a Large Transmission Chain:Bridging within and among Host Evolutionary Rates
Transmission lies at the interface of human immunodeficiency virus type 1 (HIV-1) evolution within and among hosts and separates distinct selective pressures that impose differences in both the mode of diversification and the tempo of evolution. In the absence of comprehensive direct comparative analyses of the evolutionary processes at different biological scales, our understanding of how fast within-host HIV-1 evolutionary rates translate to lower rates at the between host level remains incomplete. Here, we address this by analyzing pol and env data from a large HIV-1 subtype C transmission chain for which both the timing and the direction is known for most transmission events. To this purpose, we develop a new transmission model in a Bayesian genealogical inference framework and demonstrate how to constrain the viral evolutionary history to be compatible with the transmission history while simultaneously inferring the within-host evolutionary and population dynamics. We show that accommodating a transmission bottleneck affords the best fit our data, but the sparse within-host HIV-1 sampling prevents accurate quantification of the concomitant loss in genetic diversity. We draw inference under the transmission model to estimate HIV-1 evolutionary rates among epidemiologically-related patients and demonstrate that they lie in between fast intra-host rates and lower rates among epidemiologically unrelated individuals infected with HIV subtype C. Using a new molecular clock approach, we quantify and find support for a lower evolutionary rate along branches that accommodate a transmission event or branches that represent the entire backbone of transmitted lineages in our transmission history. Finally, we recover the rate differences at the different biological scales for both synonymous and non-synonymous substitution rates, which is only compatible with the 'store and retrieve' hypothesis positing that viruses stored early in latently infected cells preferentially transmit or establish new infections upon reactivation.status: publishe
Long-Term 3-Dimensional Stability of Mandibular Advancement Surgery
To evaluate the three-dimensional changes in the position of the condyles, rami, and chin from 1 to 3 years after mandibular advancement surgery