505 research outputs found

    A Comparative study of Madhuk Churna with Vidarikanda Churna in the management of Stanyakshaya

    Get PDF
    Ayurveda is the flawless, authentic ancient science of life and is genuinely called the “Mother of all healing.” The knowledge of Ayurveda was originated in India for more than five thousands years ago. The word Ayu literally means life and Veda the science or knowledge. Ayurveda stands for knowledge of life. Stanya is Updhatu of Rasa Dhatu. Rasa Dhatu is said to be Aadi Dhatu i.e. Pratham Dhatu. Ayurveda explains the importance of Stanya (Breast Milk) through its main function Pushti and Jeevan (growth and life). If Rasa Dhatu formation is disturbed, its Updhatu Stanya will also be disturbed. Now in modern era most of the cases of Stanya Kshaya are observed. So in present study Madhuk Churna and Vidarikand Churna are used in the management of Stanya Kshaya

    Implementation of a Portable Learning Management System (PLMS) without Internet for Skill Development in a rural Educational Institute’s

    Get PDF
    Skill development initiatives are critical for India's advancement since they reduce unemployment, stimulate economic growth, promote inclusion, and strengthen the country's worldwide competitiveness. By investing in skill development, India can capitalize on its demographic dividend and unleash the potential of its workforce for long-term growth and prosperity. The situation of education in rural India is frequently marked by several problems, particularly when it comes to accessing technology resources such as the internet and Learning Management Systems (LMS). Rural education infrastructure is often less developed than in urban areas, resulting in limited access to new technologies and digital resources. The Present research paper focuses on design and implement portable Learning Management System (PLMS) without internet for skill development in rural education Institutes

    Single-atom imaging of fermions in a quantum-gas microscope

    Get PDF
    Single-atom-resolved detection in optical lattices using quantum-gas microscopes has enabled a new generation of experiments in the field of quantum simulation. Fluorescence imaging of individual atoms has so far been achieved for bosonic species with optical molasses cooling, whereas detection of fermionic alkaline atoms in optical lattices by this method has proven more challenging. Here we demonstrate single-site- and single-atom-resolved fluorescence imaging of fermionic potassium-40 atoms in a quantum-gas microscope setup using electromagnetically-induced-transparency cooling. We detected on average 1000 fluorescence photons from a single atom within 1.5s, while keeping it close to the vibrational ground state of the optical lattice. Our results will enable the study of strongly correlated fermionic quantum systems in optical lattices with resolution at the single-atom level, and give access to observables such as the local entropy distribution and individual defects in fermionic Mott insulators or anti-ferromagnetically ordered phases.Comment: 7 pages, 5 figures; Nature Physics, published online 13 July 201

    Comparison of multiplex meta analysis techniques for understanding the acute rejection of solid organ transplants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Combining the results of studies using highly parallelized measurements of gene expression such as microarrays and RNAseq offer unique challenges in meta analysis. Motivated by a need for a deeper understanding of organ transplant rejection, we combine the data from five separate studies to compare acute rejection versus stability after solid organ transplantation, and use this data to examine approaches to multiplex meta analysis.</p> <p>Results</p> <p>We demonstrate that a commonly used parametric effect size estimate approach and a commonly used non-parametric method give very different results in prioritizing genes. The parametric method providing a meta effect estimate was superior at ranking genes based on our gold-standard of identifying immune response genes in the transplant rejection datasets.</p> <p>Conclusion</p> <p>Different methods of multiplex analysis can give substantially different results. The method which is best for any given application will likely depend on the particular domain, and it remains for future work to see if any one method is consistently better at identifying important biological signal across gene expression experiments.</p

    A New Calibrated Bayesian Internal Goodness-of-Fit Method: Sampled Posterior p-Values as Simple and General p-Values That Allow Double Use of the Data

    Get PDF
    Background: Recent approaches mixing frequentist principles with Bayesian inference propose internal goodness-of-fit (GOF) p-values that might be valuable for critical analysis of Bayesian statistical models. However, GOF p-values developed to date only have known probability distributions under restrictive conditions. As a result, no known GOF p-value has a known probability distribution for any discrepancy function. Methodology/Principal Findings: We show mathematically that a new GOF p-value, called the sampled posterior p-value (SPP), asymptotically has a uniform probability distribution whatever the discrepancy function. In a moderate finite sample context, simulations also showed that the SPP appears stable to relatively uninformative misspecifications of the prior distribution. Conclusions/Significance: These reasons, together with its numerical simplicity, make the SPP a better canonical GOF p-value than existing GOF p-values

    Continuous low-dose cyclophosphamide and methotrexate combined with celecoxib for patients with advanced cancer

    Get PDF
    BACKGROUND: Combined therapy of metronomic cyclophosphamide, methotrexate and high-dose celecoxib targeting angiogenesis was used in a phase II trial. METHODS: Patients with advanced cancer received oral cyclophosphamide 50 mg o.d., celecoxib 400 mg b.d. and methotrexate 2.5 mg b.d. for two consecutive days each week. Response was determined every 8 weeks; toxicity was evaluated according to CTC version 2.0. Plasma markers of inflammation, coagulation and angiogenesis were measured. RESULTS: Sixty-seven of 69 patients were evaluable for response. Twenty-three patients had stable disease (SD) after 8 weeks, but there were no objective responses to therapy. Median time to progression was 57 days. There was a low incidence of toxicities. Among plasma markers, levels of tissue factor were higher in the SD group of patients at baseline, and levels of both angiopoietin-1 and matrix metalloproteinase-9 increased in the progressive disease group only. There were no changes in other plasma markers. CONCLUSION: This metronomic approach has negligible activity in advanced cancer albeit with minimal toxicity. Analysis of plasma markers indicates minimal effects on endothelium in this trial. These data for this particular regimen do not support basic tenets of metronomic chemotherapy, such as the ability to overcome resistant tumours by targeting the endothelium

    Modified cantilever arrays improve sensitivity and reproducibility of nanomechanical sensing in living cells

    Get PDF
    Mechanical signaling involved in molecular interactions lies at the heart of materials science and biological systems, but the mechanisms involved are poorly understood. Here we use nanomechanical sensors and intact human cells to provide unique insights into the signaling pathways of connectivity networks, which deliver the ability to probe cells to produce biologically relevant, quantifiable and reproducible signals. We quantify the mechanical signals from malignant cancer cells, with 10 cells per ml in 1000-fold excess of non-neoplastic human epithelial cells. Moreover, we demonstrate that a direct link between cells and molecules creates a continuous connectivity which acts like a percolating network to propagate mechanical forces over both short and long length-scales. The findings provide mechanistic insights into how cancer cells interact with one another and with their microenvironments, enabling them to invade the surrounding tissues. Further, with this system it is possible to understand how cancer clusters are able to co-ordinate their migration through narrow blood capillaries

    Semaphorin 3A Suppresses Tumor Growth and Metastasis in Mice Melanoma Model

    Get PDF
    <div><h3>Background</h3><p>Recent understanding on cancer therapy indicated that targeting metastatic signature or angiogenic switch could be a promising and rational approach to combat cancer. Advancement in cancer research has demonstrated the potential role of various tumor suppressor proteins in inhibition of cancer progression. Current studies have shown that axonal sprouting inhibitor, semaphorin 3A (Sema 3A) acts as a potent suppressor of tumor angiogenesis in various cancer models. However, the function of Sema 3A in regulation of melanoma progression is not well studied, and yet to be the subject of intense investigation.</p> <h3>Methodology/Principal Findings</h3><p>In this study, using multiple <em>in vitro</em> and <em>in vivo</em> approaches we have demonstrated that Sema 3A acts as a potent tumor suppressor <em>in vitro</em> and <em>in vivo</em> mice (C57BL/6) models. Mouse melanoma (B16F10) cells overexpressed with Sema 3A resulted in significant inhibition of cell motility, invasiveness and proliferation as well as suppression of <em>in vivo</em> tumor growth, angiogenesis and metastasis in mice models. Moreover, we have observed that Sema 3A overexpressed melanoma clone showed increased sensitivity towards curcumin and Dacarbazine, anti-cancer agents.</p> <h3>Conclusions</h3><p>Our results demonstrate, at least in part, the functional approach underlying Sema 3A mediated inhibition of tumorigenesis and angiogenesis and a clear understanding of such a process may facilitate the development of novel therapeutic strategy for the treatment of cancer.</p> </div
    corecore