645 research outputs found

    Diffusion of energetic particles in turbulent MHD plasmas

    Full text link
    In this paper we investigate the transport of energetic particles in turbulent plasmas. A numerical approach is used to simulate the effect of the background plasma on the motion of energetic protons. The background plasma is in a dynamically turbulent state found from numerical MHD simulations, where we use parameters typical for the heliosphere. The implications for the transport parameters (i.e. pitch-angle diffusion coefficients and mean free path) are calculated and deviations from the quasi-linear theory are discussed.Comment: Accepted for publication in Ap

    The large longitudinal spread of solar energetic particles during the January 17, 2010 solar event

    Full text link
    We investigate multi-spacecraft observations of the January 17, 2010 solar energetic particle event. Energetic electrons and protons have been observed over a remarkable large longitudinal range at the two STEREO spacecraft and SOHO suggesting a longitudinal spread of nearly 360 degrees at 1AU. The flaring active region, which was on the backside of the Sun as seen from Earth, was separated by more than 100 degrees in longitude from the magnetic footpoints of each of the three spacecraft. The event is characterized by strongly delayed energetic particle onsets with respect to the flare and only small or no anisotropies in the intensity measurements at all three locations. The presence of a coronal shock is evidenced by the observation of a type II radio burst from the Earth and STEREO B. In order to describe the observations in terms of particle transport in the interplanetary medium, including perpendicular diffusion, a 1D model describing the propagation along a magnetic field line (model 1) (Dr\"oge, 2003) and the 3D propagation model (model 2) by (Dr\"oge et al., 2010) including perpendicular diffusion in the interplanetary medium have been applied, respectively. While both models are capable of reproducing the observations, model 1 requires injection functions at the Sun of several hours. Model 2, which includes lateral transport in the solar wind, reveals high values for the ratio of perpendicular to parallel diffusion. Because we do not find evidence for unusual long injection functions at the Sun we favor a scenario with strong perpendicular transport in the interplanetary medium as explanation for the observations.Comment: The final publication is available at http://www.springerlink.co

    Resistive Magnetic Field Generation at Cosmic Dawn

    Full text link
    Relativistic charged particles (CR for cosmic-rays) produced by Supernova explosion of the first generation of massive stars that are responsible for the re-ionization of the universe escape into the intergalactic medium, carrying an electric current. Charge imbalance and induction give rise to a return current, j⃗t\vec j_t, carried by the cold thermal plasma which tends to cancel the CR current. The electric field, E⃗=ηj⃗t\vec E=\eta \vec j_t, required to draw the collisional return current opposes the outflow of low energy cosmic rays and ohmically heats the cold plasma. Owing to inhomogeneities in the resistivity, η(T)\eta(T), caused by structure in the temperature, TT, of the intergalactic plasma, the electric field possesses a rotational component which sustains Faraday's induction. It is found that magnetic field is robustly generated throughout intergalactic space at rate of 10−17−10−16^{-17}-10^{-16} Gauss/Gyr, until the temperature of the intergalactic medium is raised by cosmic reionization. The magnetic field may seed the subsequent growth of magnetic fields in the intergalactic environment.Comment: 8 pages, 4 figures, substantially expanded for the sake of a more detailed presentation of the model. Title slightly simplified. Results unchanged. Higher resolution version available at http://www.exp-astro.phys.ethz.ch/miniati/miniatiandbell.pd

    Drift-induced deceleration of Solar Energetic Particles

    Get PDF
    We investigate the deceleration of Solar Energetic Particles (SEPs) during their propagation from the Sun through interplanetary space, in the presence of weak to strong scattering in a Parker spiral configuration, using relativistic full orbit test particle simulations. The calculations retain all three spatial variables describing particles’ trajectories, allowing to model any transport across the magnetic field. Large energy change is shown to occur for protons, due to the combined effect of standard adiabatic deceleration and a significant contribution from particle drift in the direction opposite to that of the solar wind electric field. The latter drift-induced deceleration is found to have a stronger effect for SEP energies than for galactic cosmic rays. The kinetic energy of protons injected at 1 MeV is found to be reduced by between 35 and 90% after four days, and for protons injected at 100 MeV by between 20 and 55%. The overall degree of deceleration is a weak function of the scattering mean free path, showing that, although adiabatic deceleration plays a role, a large contribution is due to particle drift. Current SEP transport models are found to account for drift-induced deceleration in an approximate way and their accuracy will need to be assessed in future work

    Solar interacting protons versus interplanetary protons in the core plus halo model of diffusive shock acceleration and stochastic re-acceleration

    Get PDF
    With the first observations of solar γ-rays from the decay of pions, the relationship of protons producing ground level enhancements (GLEs) on the Earth to those of similar energies producing the γ-rays on the Sun has been debated. These two populations may be either independent and simply coincident in large flares, or they may be, in fact, the same population stemming from a single accelerating agent and jointly distributed at the Sun and also in space. Assuming the latter, we model a scenario in which particles are accelerated near the Sun in a shock wave with a fraction transported back to the solar surface to radiate, while the remainder is detected at Earth in the form of a GLE. Interplanetary ions versus ions interacting at the Sun are studied for a spherical shock wave propagating in a radial magnetic field through a highly turbulent radial ray (the acceleration core) and surrounding weakly turbulent sector in which the accelerated particles can propagate toward or away from the Sun. The model presented here accounts for both the first-order Fermi acceleration at the shock front and the second-order, stochastic re-acceleration by the turbulence enhanced behind the shock. We find that the re-acceleration is important in generating the γ-radiation and we also find that up to 10% of the particle population can find its way to the Sun as compared to particles escaping to the interplanetary space

    Heliospheric Transport of Neutron-Decay Protons

    Get PDF
    We report on new simulations of the transport of energetic protons originating from the decay of energetic neutrons produced in solar flares. Because the neutrons are fast-moving but insensitive to the solar wind magnetic field, the decay protons are produced over a wide region of space, and they should be detectable by current instruments over a broad range of longitudes for many hours after a sufficiently large gamma-ray flare. Spacecraft closer to the Sun are expected to see orders-of magnitude higher intensities than those at the Earth-Sun distance. The current solar cycle should present an excellent opportunity to observe neutron-decay protons with multiple spacecraft over different heliographic longitudes and distances from the Sun.Comment: 12 pages, 4 figures, to be published in special issue of Solar Physic

    The band structure of BeTe - a combined experimental and theoretical study

    Full text link
    Using angle-resolved synchrotron-radiation photoemission spectroscopy we have determined the dispersion of the valence bands of BeTe(100) along ΓX\Gamma X, i.e. the [100] direction. The measurements are analyzed with the aid of a first-principles calculation of the BeTe bulk band structure as well as of the photoemission peaks as given by the momentum conserving bulk transitions. Taking the calculated unoccupied bands as final states of the photoemission process, we obtain an excellent agreement between experimental and calculated spectra and a clear interpretation of almost all measured bands. In contrast, the free electron approximation for the final states fails to describe the BeTe bulk band structure along ΓX\Gamma X properly.Comment: 21 pages plus 4 figure

    Emissions of transboundary air pollutants in the Netherlands 1990-2012 : Informative Inventory Report 2014

    Get PDF
    Emissies Nederland blijven in 2012 onder nationale plafonds De uitstoot van stikstofoxiden (NOx), ammoniak, zwaveldioxide en niet-methaan vluchtige organische stoffen (NMVOS) is in 2012 in Nederland licht gedaald. Daarmee bleef de uitstoot onder de maxima die de Europese Unie daaraan sinds 2010 stelt. Nederland voldoet daardoor, net als in 2011, aan de vier 'nationale emissieplafonds' (NEC) voor deze stoffen. Dit blijkt uit de Nederlandse emissiecijfers van grootschalige luchtverontreinigende stoffen. Het RIVM verzamelt en analyseert deze cijfers. Behalve bovengenoemde stoffen gaat het om de uitstoot van koolmonoxide, fijn stof (PM10), zware metalen en persistente organische stoffen (POP's). De uitstoot van al deze stoffen is tussen 1990 en 2012 gedaald. Dit komt vooral door schonere auto's en brandstoffen en door emissiebeperkende maatregelen van industriële sectoren. Meer kilometers door bromfietsen Door de jaren heen zijn de methoden om de emissies te berekenen verbeterd, wat nu resulteert in nauwkeurigere cijfers. De emissies van bromfietsen en motorfietsen zijn afhankelijk van het aantal gereden kilometers per jaar en daar is nu beter inzicht in. Het totale aantal gereden kilometers door bromfietsen blijkt in de afgelopen jaren bijna twee keer zo hoog is als werd gedacht. Daarmee is de uitstoot van schadelijke stoffen navenant hoger. Ten opzichte van andere typ voertuigen blijven bromfietsen echter een relatief kleine emissiebron en dragen ze beperkt bij aan de totale nationale emissies. In steden zijn ze wel een relevante bron. Het aantal gereden kilometers door motorfietsen, en daarmee de uitstoot, blijft in lijn met eerdere inzichten. Vrachtauto's zwaarder beladen De uitstoot van schadelijke stoffen door vrachtauto's is voor het eerst berekend op basis van recente inzichten in het gewicht van vrachtauto's. Trekker-opleggers blijken zwaarder beladen dan tot nu toe werd verondersteld. Ook rijden vrachtauto's vaker met een aanhanger dan tot nu toe werd aangenomen, waardoor ze zwaarder zijn. Een hoger gewicht betekent een hoger brandstofverbruik, en veelal ook een hogere uitstoot per gereden kilometer. De uitstoot van PM10 door vrachtauto's is hierdoor circa 5 procent hoger dan in de vorige IIR-rapportage. Hogere emissies ammoniak De uitstoot van ammoniak blijkt hoger dan eerder werd verondersteld vanwege enkele nieuwe inzichten; de cijfers zijn hierdoor vanaf 1997 bijgesteld. Zo worden luchtwassers, die voornamelijk op varkensstallen zitten, niet altijd gebruikt. Ook is vanaf 2002 in melkveestallen het leefoppervlak per dier toegenomen. Door het grotere contactoppervlak van mest met lucht wordt meer ammoniak uitgestoten. Door de aangepaste aannames is het nationale totaal met 6,6 kiloton verhoogd ten opzichte van 2011.Emissions the Netherlands in 2012 remain under national ceilings Emissions of nitrogen oxides (NOx), ammonia, sulphur dioxide and non-methane volatile organic compounds (NMVOC) in the Netherlands have slightly decreased in 2012. Consequently, the emissions stayed below the caps the European Union has set from 2010. Herewith, the Netherlands comply with all four so-called emission ceilings (NEC). This has become apparent from the emission data on air pollutants from the Netherlands. RIVM collects and reports these data. Besides above-mentioned substances, emissions of carbon monoxide, particulate matter (PM10), heavy metals and persistent organic pollutants (POPs) have been reported. The emissions of all substances have decreased in the 1990 - 2012 period. The downward trend may in particular be attributed to cleaner fuels, cleaner car engines and to emission reductions in the industrial sectors. More kilometres by mopeds Over the years emission calculation methods have been improved, resulting in higher data accuracy. In 2012, the emissions from mopeds and motorcycles have been calculated, based on improved knowledge of the mileages. The total number of kilometres driven by mopeds appears to have been nearly twice as high in recent years. As a result, the emissions of pollutants are proportionally higher. In relation to the total number of vehicles, the number of mopeds however remains relatively low and their contribution to the total national emissions is limited. In cities, they are a relevant source. The mileages by motorcycles, and consequently their emissions remain in line with previous insights. Heavy-duty vehicles carry heavier loads Emissions of pollutants by heavy-duty trucks have for the first time been calculated on the basis of recent insights in truck loads. Tractor-trailer combinations appear to carry heavier loads and the fraction of trailers behind rigid trucks is larger than previously assumed. A heavier load means a higher fuel use and for most substances a higher emission per kilometre driven. PM10 emissions by heavy-duty trucks are about 5 percent higher than in the previous IIR report. Higher agricultural ammonia emissions Agricultural ammonia emissions appear to be higher than previously assumed because of new insights. Air scrubbers on animal housing (predominantly pigs) were not always in use or even employed. Since 2002, the living space per animal has increased for dairy cattle housing. This resulted in a higher contact surface manure-air and thus more ammonia emitted. The new insights have raised the national total of ammonia emissions by about 6 percent compared to 2011

    Meeting Report: GBIF hackathon-workshop on Darwin Core and sample data (22-24 May 2013)

    Get PDF
    The workshop-hackathon was convened by the Global Biodiversity Information Facility (GBIF) at its secretariat in Copenhagen over 22-24 May 2013 with additional support from several projects (RCN4GSC, EAGER, VertNet, BiSciCol, GGBN, and Micro B3). It assembled a team of experts to address the challenge of adapting the Darwin Core standard for a wide variety of sample data. Topics addressed in the workshop included 1) a review of outstanding issues in the Darwin Core standard, 2) issues relating to publishing of biodiversity data through Darwin Core Archives, 3) use of Darwin Core Archives for publishing sample and monitoring data, 4) the case for modifying the Darwin Core Text Guide specification to support many-to-many relations, and 5) the generalization of the Darwin Core Archive to a "Biodiversity Data Archive". A wide variety of use cases were assembled and discussed in order to inform further developments
    • …
    corecore