81 research outputs found

    Study of nuclear correlation effects via 12C(p,n)12N(g.s.,1+) at 296 MeV

    Get PDF
    We report measurements of the cross section and a complete set of polarization observables for the Gamow--Teller 12C(p,n)12N(g.s.,1+){}^{12}{\rm C}(\vec{p},\vec{n}){}^{12}{\rm N}({\rm g.s.},1^+) reaction at a bombarding energy of 296 MeV. The data are compared with distorted wave impulse approximation calculations employing transition form factors normalized to reproduce the observed beta-decay ftft value. The cross section is significantly under-predicted by the calculations at momentum transfers qq \gtrsim 0.5 fm1{\rm fm^{-1}}. The discrepancy is partly resolved by considering the non-locality of the nuclear mean field. However, the calculations still under-predict the cross section at large momentum transfers of qq \simeq 1.6 fm1{\rm fm^{-1}}. We also performed calculations employing random phase approximation response functions and found that the observed enhancement can be attributed in part to pionic correlations in nuclei.Comment: 5 figures, submitted to Phys. Lett.

    Complete set of polarization transfer coefficients for the 3He(p,n){}^{3}{\rm He}(p,n) reaction at 346 MeV and 0 degrees

    Full text link
    We report measurements of the cross-section and a complete set of polarization transfer coefficients for the 3He(p,n){}^{3}{\rm He}(p,n) reaction at a bombarding energy TpT_p = 346 MeV and a reaction angle θlab\theta_{\rm lab} = 00^{\circ}. The data are compared with the corresponding free nucleon-nucleon values on the basis of the predominance of quasi-elastic scattering processes. Significant discrepancies have been observed in the polarization transfer DLL(0)D_{LL}(0^{\circ}), which are presumably the result of the three-proton TT = 3/2 resonance. The spin--parity of the resonance is estimated to be 1/21/2^-, and the distribution is consistent with previous results obtained for the same reaction at TpT_p = 48.8 MeV.Comment: 4 figures, Accepted for publication in Physical Review

    Pygmy dipole resonance in 208Pb

    Full text link
    Scattering of protons of several hundred MeV is a promising new spectroscopic tool for the study of electric dipole strength in nuclei. A case study of 208Pb shows that at very forward angles J^pi = 1- states are strongly populated via Coulomb excitation. A separation from nuclear excitation of other modes is achieved by a multipole decomposition analysis of the experimental cross sections based on theoretical angular distributions calculated within the quasiparticle-phonon model. The B(E1) transition strength distribution is extracted for excitation energies up to 9 MeV, i.e., in the region of the so-called pygmy dipole resonance (PDR). The Coulomb-nuclear interference shows sensitivity to the underlying structure of the E1 transitions, which allows for the first time an experimental extraction of the electromagnetic transition strength and the energy centroid of the PDR.Comment: submitted to Phys. Rev.

    Complete electric dipole response and the neutron skin in 208Pb

    Full text link
    A benchmark experiment on 208Pb shows that polarized proton inelastic scattering at very forward angles including 0{\deg} is a powerful tool for high-resolution studies of electric dipole (E1) and spin magnetic dipole (M1) modes in nuclei over a broad excitation energy range to test up-to-date nuclear models. The extracted E1 polarizability leads to a neutron skin thickness r_skin = 0.156+0.025-0.021 fm in 208Pb derived within a mean-field model [Phys. Rev. C 81, 051303 (2010)], thereby constraining the symmetry energy and its density dependence, relevant to the description of neutron stars.Comment: 5 pages, 5 figures, revised mansucrip

    Three Nucleon Force Effects in Intermediate Energy Deuteron Analyzing Powers for dp Elastic Scattering

    Get PDF
    A complete high precision set of deuteron analyzing powers for elastic deuteron-proton (dpdp) scattering at 250 MeV/nucleon (MeV/N) has been measured. The new data are presented together with data from previous measurements at 70, 100, 135 and 200 MeV/N. They are compared with the results of three-nucleon (3N) Faddeev calculations based on modern nucleon-nucleon (NN) potentials alone or combined with two models of three nucleon forces (3NFs): the Tucson-Melbourne 99 (TM99) and Urbana IX. At 250 MeV/N large discrepancies between pure NN models and data, which are not resolved by including 3NFs, were found at c.m.\ backward angles of θc.m.120\theta_{\rm c.m.}\gtrsim 120^\circ for almost all the deuteron analyzing powers. These discrepancies are quite similar to those found for the cross section at the same energy. We found small relativistic effects that cannot resolve the discrepancies with the data indicating that other, short-ranged 3NFs are required to obtain a proper description of the data.Comment: submitted to Phys. Rev.
    corecore