16 research outputs found

    Characteristics of Positive Deviants in Western Chimpanzee Populations

    Get PDF
    With continued expansion of anthropogenically modified landscapes, the proximity between humans and wildlife is continuing to increase, frequently resulting in species decline. Occasionally however, species are able to persist and there is an increased interest in understanding such positive outliers and underlying mechanisms. Eventually, such insights can inform the design of effective conservation interventions by mimicking aspects of the social-ecological conditions found in areas of species persistence. Recently, frameworks have been developed to study the heterogeneity of species persistence across populations with a focus on positive outliers. Applications are still rare, and to our knowledge this is one of the first studies using this approach for terrestrial species conservation. We applied the positive deviance concept to the western chimpanzee, which occurs in a variety of social-ecological landscapes. It is now categorized as Critically Endangered due to hunting and habitat loss and resulting excessive decline of most of its populations. Here we are interested in understanding why some of the populations did not decline. We compiled a dataset of 17,109 chimpanzee survey transects (10,929 km) across nine countries and linked them to a range of social and ecological variables. We found that chimpanzees seemed to persist within three social-ecological configurations: first, rainforest habitats with a low degree of human impact, second, steep areas, and third, areas with high prevalence of hunting taboos and low degree of human impact. The largest chimpanzee populations are nowadays found under the third social-ecological configuration, even though most of these areas are not officially protected. Most commonly chimpanzee conservation has been based on exclusion of threats by creation of protected areas and law enforcement. Our findings suggest, however, that this approach should be complemented by an additional focus on threat reduction, i.e., interventions that directly target individual human behavior that is most threatening to chimpanzees, which is hunting. Although changing human behavior is difficult, stakeholder co-designed behavioral change approaches developed in the social sciences have been used successfully to promote pro-environmental behavior. With only a fraction of chimpanzees and primates living inside protected areas, such new approaches might be a way forward to improve primate conservation

    Advancing conservation planning for western chimpanzees using IUCN SSC A.P.E.S.-the case of a taxon-specific database

    Get PDF
    Even though information on global biodiversity trends becomes increasingly available, large taxonomic and spatial data gaps persist at the scale relevant to planning conservation interventions. This is because data collectors are hesitant to share datawith global repositories due toworkload, lack of incentives, and perceived risk of losing intellectual property rights. In contrast, due to greater conceptual and methodological proximity, taxon-specific database initiatives can provide more direct benefits to data collectors through research collaborations and shared authorship.TheIUCNSSC Ape Populations, Environments and Surveys (A.P.E.S.) database was created in 2005 as a repository for data on great apes and other primate taxa. It aims to acquire field survey data and make different types of data accessible, and provide up-to-date species status information. To support the current update of the conservation action plan forwestern chimpanzees (Pan troglodytes verus) we compiled field surveys for this taxon from IUCNSSCA.P.E.S., 75%ofwhich were unpublished. We used spatial modeling to infer total population size, range-wide density distribution, population connectivity and landscape-scale metrics.Weestimated a total abundance of 52 800 (95%CI 17 577–96 564) western chimpanzees, of which only 17%occurred in national parks.We also found that 10%of chimpanzees live within 25 kmof fourmulti-national ‘development corridors’ currently planned forWestAfrica. These large infrastructure projects aim to promote economic integration and agriculture expansion, but are likely to cause further habitat loss and reduce population connectivity.We close by demonstrating the wealth of conservation-relevant information derivable from a taxon-specific database like IUCNSSC A.P.E.S. and propose that a network of many more such databases could be created to provide the essential information to conservation that can neither be supplied by one-off projects nor by global repositories, and thus are highly complementary to existing initiatives

    PanAf20K : a large video dataset for wild ape detection and behaviour recognition

    Get PDF
    The work that allowed for the collection of the dataset was funded by the Max Planck Society, Max Planck Society Innovation Fund, and Heinz L. Krekeler. This work was supported by the UKRI CDT in Interactive AI under grant EP/S022937/1.We present the PanAf20K dataset, the largest and most diverse open-access annotated video dataset of great apes in their natural environment. It comprises more than 7 million frames across ∼20,000 camera trap videos of chimpanzees and gorillas collected at 18 field sites in tropical Africa as part of the Pan African Programme: The Cultured Chimpanzee. The footage is accompanied by a rich set of annotations and benchmarks making it suitable for training and testing a variety of challenging and ecologically important computer vision tasks including ape detection and behaviour recognition. Furthering AI analysis of camera trap information is critical given the International Union for Conservation of Nature now lists all species in the great ape family as either Endangered or Critically Endangered. We hope the dataset can form a solid basis for engagement of the AI community to improve performance, efficiency, and result interpretation in order to support assessments of great ape presence, abundance, distribution, and behaviour and thereby aid conservation efforts. The dataset and code are available from the project website: PanAf20KPeer reviewe

    Open-access platform to synthesize knowledge of ape conservation across sites

    Get PDF
    Despite the large body of literature on ape conservation, much of the data needed for evidence‐based conservation decision‐making is still not readily accessible and standardized, rendering cross‐site comparison difficult. To support knowledge synthesis and to complement the IUCN SSC Ape Populations, Environments and Surveys database, we created the A.P.E.S. Wiki (https://apeswiki.eva.mpg.de), an open‐access platform providing site‐level information on ape conservation status and context. The aim of this Wiki is to provide information and data about geographical ape locations, to curate information on individuals and organizations active in ape research and conservation, and to act as a tool to support collaboration between conservation practitioners, scientists, and other stakeholders. To illustrate the process and benefits of knowledge synthesis, we used the momentum of the update of the conservation action plan for western chimpanzees (Pan troglodytes verus) and began with this critically endangered taxon. First, we gathered information on 59 sites in West Africa from scientific publications, reports, and online sources. Information was compiled in a standardized format and can thus be summarized using a web scraping approach. We then asked experts working at those sites to review and complement the information (20 sites have been reviewed to date). We demonstrate the utility of the information available through the Wiki, for example, for studying species distribution. Importantly, as an open‐access platform and based on the well‐known wiki layout, the A.P.E.S. Wiki can contribute to direct and interactive information sharing and promote the efforts invested by the ape research and conservation community. The Section on Great Apes and the Section on Small Apes of the IUCN SSC Primate Specialist Group will guide and support the expansion of the platform to all small and great ape taxa. Similar collaborative efforts can contribute to extending knowledge synthesis to all nonhuman primate species.Additional co-authors: R. Adriana Hernandez‐Aguilar, Annika Hillers, Kimberley J. Hockings, Sorrel Jones, Michael Kaiser, Kathelijne Koops, Juan M. Lapuente, Julia Riedel, Emilien Terrade, Clement G. Tweh, Virginie Vergnes, Tina Vogt, Hjalmar S. Küh

    Range-wide indicators of African great ape density distribution

    Get PDF
    Species distributions are influenced by processes occurring at multiple spatial scales. It is therefore insufficient to model species distribution at a single geographic scale, as this does not provide the necessary understanding of determining factors. Instead, multiple approaches are needed, each differing in spatial extent, grain, and research objective. Here, we present the first attempt to model continent-wide great ape density distribution. We used site-level estimates of African great ape abundance to (1) identify socioeconomic and environmental factors that drive densities at the continental scale, and (2) predict range-wide great ape density. We collated great ape abundance estimates from 156 sites and defined 134 pseudo-absence sites to represent additional absence locations. The latter were based on locations of unsuitable environmental conditions for great apes, and on existing literature. We compiled seven socioeconomic and environmental covariate layers and fitted a generalized linear model to investigate their influence on great ape abundance. We used an Akaike-weighted average of full and subset models to predict the range-wide density distribution of African great apes for the year 2015. Great ape densities were lowest where there were high Human Footprint and Gross Domestic Product values; the highest predicted densities were in Central Africa, and the lowest in West Africa. Only 10.7% of the total predicted population was found in the International Union for Conservation of Nature Category I and II protected areas. For 16 out of 20 countries, our estimated abundances were largely in line with those from previous studies. For four countries, Central African Republic, Democratic Republic of the Congo, Liberia, and South Sudan, the estimated populations were excessively high. We propose further improvements to the model to overcome survey and predictor data limitations, which would enable a temporally dynamic approach for monitoring great apes across their range based on key indicators.Additional co-authors: Jessica Ganas-Swaray, Nicholas Granier, Elizabeth Greengrass, Stefanie Heinicke, Ilka Herbinger, Clement Inkamba-Nkulu, Fortuné Iyenguet, Jessica Junker, Kadiri S. Bobo, Alain Lushimba, Guy Aimé Florent Malanda, Maureen S. McCarthy, Prosper Motsaba, Jennifer Moustgaard, Mizuki Murai, Bezangoye Ndokoue, Stuart Nixon, Rostand Aba'a Nseme, Zacharie Nzooh, Lilian Pintea, Andrew J. Plumptre, Justin Roy, Aaron Rundus, Jim Sanderson, Adeline Serckx, Samantha Strindberg, Clement Tweh, Hilde Vanleeuwe, Ashley Vosper, Matthias Waltert, Michael Wilson, Roger Mundry, Hjalmar S. Küh

    Chimpanzee accumulative stone throwing

    Get PDF
    The study of the archaeological remains of fossil hominins must rely on reconstructions to elucidate the behaviour that may have resulted in particular stone tools and their accumulation. Comparatively, stone tool use among living primates has illuminated behaviours that are also amenable to archaeological examination, permitting direct observations of the behaviour leading to artefacts and their assemblages to be incorporated. Here, we describe newly discovered stone tool-use behaviour and stone accumulation sites in wild chimpanzees reminiscent of human cairns. In addition to data from 17 mid- to long-term chimpanzee research sites, we sampled a further 34 Pan troglodytes communities. We found four populations in West Africa where chimpanzees habitually bang and throw rocks against trees, or toss them into tree cavities, resulting in conspicuous stone accumulations at these sites. This represents the first record of repeated observations of individual chimpanzees exhibiting stone tool use for a purpose other than extractive foraging at what appear to be targeted trees. The ritualized behavioural display and collection of artefacts at particular locations observed in chimpanzee accumulative stone throwing may have implications for the inferences that can be drawn from archaeological stone assemblages and the origins of ritual sites

    Characteristics of Positive Deviants in Western Chimpanzee Populations

    Get PDF
    With continued expansion of anthropogenically modified landscapes, the proximity between humans and wildlife is continuing to increase, frequently resulting in species decline. Occasionally however, species are able to persist and there is an increased interest in understanding such positive outliers and underlying mechanisms. Eventually, such insights can inform the design of effective conservation interventions by mimicking aspects of the social-ecological conditions found in areas of species persistence. Recently, frameworks have been developed to study the heterogeneity of species persistence across populations with a focus on positive outliers. Applications are still rare, and to our knowledge this is one of the first studies using this approach for terrestrial species conservation. We applied the positive deviance concept to the western chimpanzee, which occurs in a variety of social-ecological landscapes. It is now categorized as Critically Endangered due to hunting and habitat loss and resulting excessive decline of most of its populations. Here we are interested in understanding why some of the populations did not decline. We compiled a dataset of 17,109 chimpanzee survey transects (10,929 km) across nine countries and linked them to a range of social and ecological variables. We found that chimpanzees seemed to persist within three social-ecological configurations: first, rainforest habitats with a low degree of human impact, second, steep areas, and third, areas with high prevalence of hunting taboos and low degree of human impact. The largest chimpanzee populations are nowadays found under the third social-ecological configuration, even though most of these areas are not officially protected. Most commonly chimpanzee conservation has been based on exclusion of threats by creation of protected areas and law enforcement. Our findings suggest, however, that this approach should be complemented by an additional focus on threat reduction, i.e., interventions that directly target individual human behavior that is most threatening to chimpanzees, which is hunting. Although changing human behavior is difficult, stakeholder co-designed behavioral change approaches developed in the social sciences have been used successfully to promote pro-environmental behavior. With only a fraction of chimpanzees and primates living inside protected areas, such new approaches might be a way forward to improve primate conservation

    Environmental variability supports chimpanzee behavioural diversity.

    Get PDF
    Funder: Max-Planck-Gesellschaft (Max Planck Society); doi: https://doi.org/10.13039/501100004189Funder: Heinz L. Krekeler FoundationLarge brains and behavioural innovation are positively correlated, species-specific traits, associated with the behavioural flexibility animals need for adapting to seasonal and unpredictable habitats. Similar ecological challenges would have been important drivers throughout human evolution. However, studies examining the influence of environmental variability on within-species behavioural diversity are lacking despite the critical assumption that population diversification precedes genetic divergence and speciation. Here, using a dataset of 144 wild chimpanzee (Pan troglodytes) communities, we show that chimpanzees exhibit greater behavioural diversity in environments with more variability - in both recent and historical timescales. Notably, distance from Pleistocene forest refugia is associated with the presence of a larger number of behavioural traits, including both tool and non-tool use behaviours. Since more than half of the behaviours investigated are also likely to be cultural, we suggest that environmental variability was a critical evolutionary force promoting the behavioural, as well as cultural diversification of great apes
    corecore