132 research outputs found

    Resistance to eyespot (Pseudocercosporella herpotricoides) and distribution of biochemical markers in hexaploid lines derived from double cross (Triticum turgidum x Aegilops ventricosa) x T. aestivum

    Get PDF
    There are not good intraspecific sources of resistance to the eyespot disea se of wheat, aaused by Cercosporella herpotrichoides Fvon . The -ínterspecifia transfer of genes for resistanoe from Aegitops ventricosa into hexaploid wheat has been only partially achieved, because the degree of resistanoe attained is not as high as that of the donor. We report here on the transfer of resistanoe in a double oross (Triticum turgidum var. rubroatrwv H-1-1 x Ae.ventricosa AP-D x T.aestivum cv. Almatense H-10-15. The high level of resistanoe in a high proportion of the lines strongly suggests a simple genetic control for this oharacter (possibly by one major gene). The gene(s) responsible for resistanoe in the selected lines must be associa ted with the D genome of Aegilops ventricosa on the basis of a detailed study of the distribution of biochemioal markers in the H-93 lines. These results do not exelude that genes with similar effeets might be looated in the M° genome

    Eyespot resistance gene Pch-1 from Aegilops ventricosa is associated with a different chromosome in wheat line H-93-70 than the resistance factor in "Roazon" wheat

    Get PDF
    The hexaploid wheat line H-93-70 carries a gene (Pch-1) that has been transferred from the wild grass Aegilops ventricosa and confers a high degree of resistance to eyespot diesease, caused by the fungus Pseudocercosporella herpotrichoides. Crosses of the resistant line H-93-70 with the susceptible wheat Pané 247 and with a 7D/7Ag wheat/Agropyron substitution line were carried out and F2 kernels were obtained. The kernels were cut transversally and the halves carrying the embryos were used for the resistance test, while the distal halves were used for genetic typing. Biochemical markers were used to discriminate whether the transferred Pch-1 gene was located in chromosome 7D, as is the case for a resistance factor present in Roazon wheat. In the crosses involving Pané 247, resistance was not associated with the 7D locus Pln, which determines sterol ester pattern (dominant allele in H-93-70). In the crosses with the 7D/7Ag substitution line, resistance was neither associated with protein NGE-11 (7D marker), nor alternatively inherited with respect to protein C-7 (7Ag marker). It is concluded that gene Pch-1 represents a different locus and is not an allele of the resistance factor in Roazon whea

    Eyespot resistance gene Pch-1 in H-93 wheat lines. Evidence of linkage to markers of chromosome group 7 and resolution from the endopeptídase locus Ep-Dlb

    Get PDF
    Gene Pch1, which confers resistance to eyespot disease (Pseudocercosporella herpotrichoides Fron), has been located on chromosome 7D in the H-93 wheat-Aegilops ventricosa transfer lines using isozyme markers and DNA probes corresponding to group 7 chromosomes. Previous experiments had failed to ascertain this location. The lack of segregation of the resistance trait in progeny from reciprocal crosses between lines H-93-70 and VPM1 indicates that their respective resistance factors are allelic. Line H-93-51 carries the endopeptidase allele Ep-D1b but is susceptible to eyespot, which indicates that resistance to eyespot is not a product of the Ep-D locus, as had been proposed in a previous hypohesi

    Transfer of a major dominant gene for resistance to eyespot disease from a wild grass to hexaploid wheat

    Full text link
    Eyespot disease, caused by the fungus Pseudocercosporella herpotrichoides, is responsible for considerable lodging and reductions of yield in extensive areas of wheat cultivation in North and South America, Europe, New Zealand, Australia and Africa1. The level of resistance of wheat cultivars is too low, even among the less susceptible ones (that is, Cappelle Desprez and Cerco) and no genes for resistance have to date been characterized in any species. Sprague2 found a high level of resistance to this disease in the wild grass Aegilops ventricosa and several workers have attempted its transfer to cultivated wheat with only partial success3−5. We report here a major dominant gene for resistance, which has been transferred from tetraploid Ae. ventricosa (genomes DvDvMvMv) to hexaploid wheat, Triticum aestivum (AABBDD), using tetraploid wheat, Triticum turgidum (AABB), as a 'bridge' species

    Biochemical markers associated with two Mv chromosomes from Aegilops ventricosa in wheat-Aegilops addition lines

    Full text link
    The distribution of three biochemical markers, U-1, CM-4 and Aphv-a, -b, among wheat-Aegilops addition lines carrying Mv chromosomes from Aegilops ventricosa (genomes DvMv) has been investigated. Addition lines which had been previously grouped together on the basis of common non-biochemical characters carried marker U-1, a protein component from the 2M urea extract. The added chromosome, in the appropriate genetic background, seems to confer a high level of resistance to the eyespot disease, caused by the fungus Cercosporella herpotrichoides. The other two markers were concomitantly associated with another similarly formed group of addition lines. Both CM-4, a protein component from the chloroform:methanol extract, and Aphv-a, -b, alkaline phosphate isozymes, have been previously shown to be associated with homoeologous chromosome group 4, which suggests that the added chromosome in the second group of addition lines is 4Mv

    Biochemical and cytological characterization of wheat/Aegilops ventricosa addition and transfer lines carrying chromosome 4MV

    Full text link
    The gene encoding a variant of alcohol dehydrogenase, Adh-, has been found to be associated with the chromosome of the Mv genome which is present in type 9 wheat/Aegilops ventricosa addition line, to which the genes for protein CM-4 and for a phosphatase variant, Aph-v, had been previously assigned. Transfer line H-93-33, which has 42 chromosomes and has been derived from the cross (Triticum turgidum x Ae. ventricosa) x T. aestivum, carries genes encoding all three biochemical markers. Linkage between these genes has been demonstrated by analysis of individual kernels of the F2 (H-93-33 x T. aestivum cv. Almatense H-10-15). A study of the hybrids of line H-93-33 with T. aestivum H-10-15 and with the 4DS ditelosomic line has confirmed that, as suspected, the linkage group corresponds to chromosome 4Mv from Ae. ventricosa. Additionally, it has been found that the previously reported resistance of line H-93-33 to powdery mildew (Erysiphe graminis) is also linked to the biochemical markers; this indicates that either the gene responsible for it is different from that in lines H-93-8 and H-93-35, or that a translocation between two different Mv chromosomes has occurred in line H-93-33

    High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool

    Get PDF
    In wheat, a lack of genetic diversity between breeding lines has been recognized as a significant block to future yield increases. Species belonging to bread wheat's secondary and tertiary gene pools harbour a much greater level of genetic variability, and are an important source of genes to broaden its genetic base. Introgression of novel genes from progenitors and related species has been widely employed to improve the agronomic characteristics of hexaploid wheat, but this approach has been hampered by a lack of markers that can be used to track introduced chromosome segments. Here, we describe the identification of a large number of single nucleotide polymorphisms that can be used to genotype hexaploid wheat and to identify and track introgressions from a variety of sources. We have validated these markers using an ultra-high-density Axiom(®) genotyping array to characterize a range of diploid, tetraploid and hexaploid wheat accessions and wheat relatives. To facilitate the use of these, both the markers and the associated sequence and genotype information have been made available through an interactive web site

    Resistance to the cereal cyst nematode (Heterodera avenae) transferred from the wild grass Aegilops ventricosa to hexaploid wheat by a "stepping-stone" procedure

    Get PDF
    Transfer of resistance toHeterodera avenae, the cereal cyst nematode (CCN), by a stepping-stoneprocedure from the wild grassAegilops ventricosa to hexaploid wheat has been demonstrated. The number of nematodes per plant was lower, and reached a plateau much earlier, in the resistant introgression line H93-8 (1–2 nematodes per plant) than in the recipient H10-15 wheat (14–16 nematodes per plant). Necrosis (hypersensitive reaction) near the nematode, little cell fusion, and few, often degraded syncytia were observed in infested H93-8 roots, while abundant, well-formed syncytia were present in the susceptible H10-15 wheat. Line H93-8 was highly resistant to the two Spanish populations tested, as well as the four French races (Fr1-Fr4), and the British pathotype Hall, but was susceptible to the Swedish pathotypes HgI and HgIII. Resistance was inherited as though determined by a single quasi-dominant factor in the F2 generations resulting from crosses of H93-8 with H10-15 and with Loros, a resistant wheat carrying the geneCre1 (syn.Ccn1). The resistance gene in H93-8 (Cre2 orCcn2) is not allelic with respect to that in Loros. RFLPs and other markers, together with the cytogenetical evidence, indicate that theCre2 gene has been integrated into a wheat chromosome without affecting its meiotic pairing ability. Introduction ofCre2 by backcrossing into a commercial wheat backgroud increases grain yield when under challenge by the nematode and is not detrimental in the absence of infestation

    Introgression of Aegilops speltoides segments in Triticum aestivum and the effect of the gametocidal genes

    Get PDF
    • Background and Aims Bread wheat (Triticum aestivum) has been through a severe genetic bottleneck as a result of its evolution and domestication. It is therefore essential that new sources of genetic variation are generated and utilized. This study aimed to generate genome-wide introgressed segments from Aegilops speltoides. Introgressions generated from this research will be made available for phenotypic analysis. • Methods Aegilops speltoides was crossed as the male parent to T. aestivum ‘Paragon’. The interspecific hybrids were then backcrossed to Paragon. Introgressions were detected and characterized using the Affymetrix Axiom Array and genomic in situ hybridization (GISH). • Key Results Recombination in the gametes of the F₁ hybrids was at a level where it was possible to generate a genetic linkage map of Ae. speltoides. This was used to identify 294 wheat/Ae. speltoides introgressions. Introgressions from all seven linkage groups of Ae. speltoides were found, including both large and small segments. Comparative analysis showed that overall macro-synteny is conserved between Ae. speltoides and T. aestivum, but that Ae. speltoides does not contain the 4A/5A/7B translocations present in wheat. Aegilops speltoides has been reported to carry gametocidal genes, i.e. genes that ensure their transmission through the gametes to the next generation. Transmission rates of the seven Ae. speltoides linkage groups introgressed into wheat varied. A 100 % transmission rate of linkage group 2 demonstrates the presence of the gametocidal genes on this chromosome. • Conclusions A high level of recombination occurs between the chromosomes of wheat and Ae. speltoides, leading to the generation of large numbers of introgressions with the potential for exploitation in breeding programmes. Due to the gametocidal genes, all germplasm developed will always contain a segment from Ae. speltoides linkage group 2S, in addition to an introgression from any other linkage group

    Transmission Frequencies of Introgressed Festuca pratensis Chromosomes and Chromosome Segments in Lolium perenne

    Get PDF
    The introgression of genetic variation from related species into crops provides an important route by which superior plant varieties can be produced. The primary aim of introgression involves the transfer of a small chromosome segment from a related species into a chromosome of a crop species (via recombination at meiosis) to generate an interspecific recombinant chromosome. Very little is known about the selective pressures that act on the products of interspecific recombination. Seven monosomic substitution lines were developed between Lolium perenne and Festuca pratensis. When each line was backcrossed to L. perenne recombination occurred between the F. pratensis chromosome and its L. perenne homoeologue, resulting in backcross populations carrying L. perenne/F. pratensis recombinant chromosomes. This paper describes the relationship between the frequency of generation of interspecific recombinant chromosomes with the frequency of their transmission to the next generation. The results reveal the presence of neutral, negative, and positive selection pressures for the transmission of F. pratensis chromosomes and L. perenne/F. pratensis recombinant chromosomes through the gametes to the next generation. The type of selection pressure observed depended on which linkage group the F. pratensis chromosome under study was derived from. The implications of these results are discussed
    corecore