119 research outputs found

    Trends in ExPEC serogroups in the UK and their significance

    Get PDF
    We thank the British Society for Antimicrobial Chemotherapy for kindly providing E. coli bloodstream isolates from the BSAC Bacteraemia Resistance Surveillance Programme (2011), and all the staff at PHE’s Gastrointestinal Bacteria Reference Unit for their guidance and patience during the serogrouping process. This work was performed as part of a PhD study funded by PHE

    High Density Microarray Analysis Reveals New Insights into Genetic Footprints of Listeria monocytogenes Strains Involved in Listeriosis Outbreaks

    Get PDF
    Listeria monocytogenes, a foodborne bacterial pathogen, causes invasive and febrile gastroenteritis forms of listeriosis in humans. Both invasive and febrile gastroenteritis listeriosis is caused mostly by serotypes 1/2a, 1/2b and 4b strains. The outbreak strains of serotype 1/2a and 4b could be further classified into several epidemic clones but the genetic bases for the diverse pathophysiology have been unsuccessful. DNA microarray provides an important tool to scan the entire genome for genetic signatures that may distinguish the L. monocytogenes strains belonging to different outbreaks. We have designed a pan-genomic microarray chip (Listeria GeneChip) containing sequences from 24 L. monocytogenes strains. The chip was designed to identify the presence/absence of genomic sequences, analyze transcription profiles and identify SNPs. Analysis of the genomic profiles of 38 outbreak strains representing 1/2a, 1/2b and 4b serotypes, revealed that the strains formed distinct genetic clusters adhering to their serotypes and epidemic clone types. Although serologically 1/2a and 1/b strains share common antigenic markers microarray analysis revealed that 1/2a strains are further apart from the closely related 1/2b and 4b strains. Within any given serotype and epidemic clone type the febrile gastroenteritis and invasive strains can be further distinguished based on several genetic markers including large numbers of phage genome, and intergenic sequences. Our results showed that the microarray-based data can be an important tool in characterization of L. monocytogenes strains involved in both invasive and gastroenteritis outbreaks. The results for the first time showed that the serotypes and epidemic clones are based on extensive pan-genomic variability and the 1/2b and 4bstrains are more closely related to each other than the 1/2a strains. The data also supported the hypothesis that the strains causing these two diverse outbreaks are genotypically different and this finding might be important in understanding the pathophysiology of this organism

    Genomic characterization of the most barotolerant Listeria monocytogenes RO15 strain compared to reference strains used to evaluate food high pressure processing

    Get PDF
    BackgroundHigh pressure processing (HPP; i.e. 100-600MPa pressure depending on product) is a non-thermal preservation technique adopted by the food industry to decrease significantly foodborne pathogens, including Listeria monocytogenes, from food. However, susceptibility towards pressure differs among diverse strains of L. monocytogenes and it is unclear if this is due to their intrinsic characteristics related to genomic content. Here, we tested the barotolerance of 10 different L. monocytogenes strains, from food and food processing environments and widely used reference strains including clinical isolate, to pressure treatments with 400 and 600MPa. Genome sequencing and genome comparison of the tested L. monocytogenes strains were performed to investigate the relation between genomic profile and pressure tolerance.ResultsNone of the tested strains were tolerant to 600MPa. A reduction of more than 5 log(10) was observed for all strains after 1min 600MPa pressure treatment. L. monocytogenes strain RO15 showed no significant reduction in viable cell counts after 400MPa for 1min and was therefore defined as barotolerant. Genome analysis of so far unsequenced L. monocytogenes strain RO15, 2HF33, MB5, AB199, AB120, C7, and RO4 allowed us to compare the gene content of all strains tested. This revealed that the three most pressure tolerant strains had more than one CRISPR system with self-targeting spacers. Furthermore, several anti-CRISPR genes were detected in these strains. Pan-genome analysis showed that 10 prophage genes were significantly associated with the three most barotolerant strains.ConclusionsL. monocytogenes strain RO15 was the most pressure tolerant among the selected strains. Genome comparison suggests that there might be a relationship between prophages and pressure tolerance in L. monocytogenes.Peer reviewe

    Resource provisioning for enriched services in Cloud environments

    No full text
    International audienc

    The population structure of Escherichia coli causing bacteraemia in the UK and Ireland between 2001 and 2010

    No full text
    Objectives: Escherichia coli is the commonest agent of bacteraemia, bacterial gastroenteritis, and UTIs. The lineages causing UTIs and gastrointestinal disease are well defined, but less is known about those causing bacteraemia. We therefore investigated the population structure of E. coli from bacteraemia in the UK and Ireland between 2001 and 2010. Methods: E. coli isolates (n = 2166) were submitted to the BSAC Bacteraemia Surveillance Programme from 18 UK and Irish centres from 2001-10. Genotypes were analysed by MLST using the Achtman scheme; MICs, blaCTX-M-group and patient demographics were previously determined in the BSAC surveillance. Results: 448 sequence types (STs) were identified but five of these, and their associated clonal complexes (CCs), accounted for 58.4% (1264/2166) isolates: CC73 was the most common (20.7%), followed by CC131 (13.9%), CC95 (11.3%), CC69 (6.9%) and CC12 (5.5%). All these, except CC69 (group D), belong to phylogenetic group B2. CC131 isolates were much more often MDR than other STs: they rose from 2.9% of isolates in 2001 to 20.5-20.7% in 2007-8, then declined to 14.3% in 2010. Resistance rates to cephalosporins, aminoglycosides and fluoroquinolones remained below 10% in other major CCs throughout. Conclusions: The five most prevalent bacteraemia STs have all been associated previously with UTIs. They dominated in all years, but their proportions fluctuated, most notably for ST131, a globally-disseminated high-risk clone that is often MDR

    Comparative virulence of urinary and bloodstream isolates of extra-intestinal pathogenic Escherichia coli in a Galleria mellonella model

    No full text
    Extra-intestinal pathogenic Escherichia coli (ExPEC) are a significant cause of urinary tract infections and bacteraemia worldwide. Currently no single virulence factor or ExPEC lineage has been identified as the sole contributor to severe extra-intestinal infection and/or urosepsis. Galleria mellonella has recently been established as a simple model for studying the comparative virulence of ExPEC. In this study we investigated the virulence of 40 well-characterized ExPEC strains, in G. mellonella, by measuring mortality (larvae survival), immune recognition/response (melanin production) and cell damage (lactate dehydrogenase production). Although mortality was similar between urinary and bloodstream isolates, it was heightened for community-associated infections, complicated UTIs and urinary-source bacteraemia. Isolates of ST131 and those possessing afa/dra, ompT and serogroup O6 were also associated with heightened virulence

    Comparative virulence of urinary and bloodstream isolates of extra-intestinal pathogenic Escherichia coli in a Galleria mellonella model

    No full text
    Extra-intestinal pathogenic Escherichia coli (ExPEC) are a significant cause of urinary tract infections and bacteraemia worldwide. Currently no single virulence factor or ExPEC lineage has been identified as the sole contributor to severe extra-intestinal infection and/or urosepsis. Galleria mellonella has recently been established as a simple model for studying the comparative virulence of ExPEC. In this study we investigated the virulence of 40 well-characterized ExPEC strains, in G. mellonella, by measuring mortality (larvae survival), immune recognition/response (melanin production) and cell damage (lactate dehydrogenase production). Although mortality was similar between urinary and bloodstream isolates, it was heightened for community-associated infections, complicated UTIs and urinary-source bacteraemia. Isolates of ST131 and those possessing afa/dra, ompT and serogroup O6 were also associated with heightened virulence
    • …
    corecore