291 research outputs found

    A phase-locked frequency divide-by-3 optical parametric oscillator

    Full text link
    Accurate phase-locked 3:1 division of an optical frequency was achieved, by using a continuous-wave (cw) doubly resonant optical parametric oscillator. A fractional frequency stability of 2*10^(-17) of the division process has been achieved for 100s integration time. The technique developed in this work can be generalized to the accurate phase and frequency control of any cw optical parametric oscillator.Comment: 4 pages, 5 figures in a postscript file. To appear in a special issue of IEEE Trans. Instr. & Meas., paper FRIA-2 presented at CPEM'2000 conference, Sydney, May 200

    Two-photon spectroscopy of trapped HD+^+ ions in the Lamb-Dicke regime

    Full text link
    We study the feasibility of nearly-degenerate two-photon rovibrational spectroscopy in ensembles of trapped, sympathetically cooled hydrogen molecular ions using a resonance-enhanced multiphoton dissociation (REMPD) scheme. Taking advantage of quasi-coincidences in the rovibrational spectrum, the excitation lasers are tuned close to an intermediate level to resonantly enhance two-photon absorption. Realistic simulations of the REMPD signal are obtained using a four-level model that takes into account saturation effects, ion trajectories, laser frequency noise and redistribution of population by blackbody radiation. We show that the use of counterpropagating laser beams enables optical excitation in an effective Lamb-Dicke regime. Sub-Doppler lines having widths in the 100 Hz range can be observed with good signal-to-noise ratio for an optimal choice of laser detunings. Our results indicate the feasibility of molecular spectroscopy at the 101410^{-14} accuracy level for improved tests of molecular QED, a new determination of the proton-to-electron mass ratio, and studies of the time (in)dependence of the latter.Comment: 16 pages, 17 figure

    Stability of the self-phase-locked pump-enhanced singly resonant parametric oscillator

    Get PDF
    Steady-state and dynamics of the self-phase-locked (3\omega ==> 2\omega, \omega) subharmonic optical parametric oscillator are analyzed in the pump-and-signal resonant configuration, using an approximate analytical model and a full propagation model. The upper branch solutions are found always stable, regardless of the degree of pump enhancement. The domain of existence of stationary states is found to critically depend on the phase-mismatch of the competing second-harmonic process.Comment: LateX2e/RevteX4, 4 pages, 5 figures. Submitted to Phys. Rev. A (accepted on Jan. 17, 2003

    75%-efficiency blue generation from an intracavity PPKTP frequency doubler

    Full text link
    We report on a high-efficiency 461 nm blue light conversion from an external cavity-enhanced second-harmonic generation of a 922 nm diode laser with a quasi-phase-matched KTP crystal (PPKTP). By choosing a long crystal (LC=20 mm) and twice looser focusing (w0=43 μ\mum) than the "optimal" one, thermal lensing effects due to the blue power absorption are minimized while still maintaining near-optimal conversion efficiency. A stable blue power of 234 mW with a net conversion efficiency of eta=75% at an input mode-matched power of 310 mW is obtained. The intra-cavity measurements of the conversion efficiency and temperature tuning bandwidth yield an accurate value d33(461 nm)=15 pm/V for KTP and provide a stringent validation of some recently published linear and thermo-optic dispersion data of KTP

    Thromboembolic risk stratification by TRiP(cast) score to rationalise thromboprophylaxis in patients with lower leg trauma requiring immobilisation: a study protocol of the casting stepped-wedge cluster randomised trial.

    Get PDF
    Patients with lower limb trauma requiring orthopaedic immobilisation may be at risk of venous thromboembolism but opinions differ about who may benefit from thromboprophylactic anticoagulant treatment.The aim of this CASTING study is to demonstrate the safety of thromboprophylaxis based on the Thrombosis Risk Prediction for patients with cast immobilisation (TRiP(cast) score with regards to the 3-month incidence of symptomatic venous thromboembolism events in low-risk patients not receiving thromboprophylaxis, as well as the usefulness of this strategy on the rate of patients receiving anticoagulant treatment in comparison to current practice. CASTING will be a stepped-wedge cluster randomised controlled clinical trial, performed in 15 emergency departments in France and Belgium. With their informed consent, outpatients admitted to one of the participating emergency departments for a lower limb trauma requiring orthopaedic immobilisation without surgery will be included. All centres will begin the trial with the 'observational period' and, every 2 weeks, 1 centre will be randomly assigned to switch to the 'interventional period' and to apply the TRiP(cast) score, in which only patients with a score ≥7 will receive thromboprophylactic anticoagulant treatment. The primary endpoint is the rate of clinical thromboembolic events within 90 days following the inclusion of low-risk patients not receiving thromboprophylaxis. The protocol has been approved by the Comité de Protection des Personnes Sud I (Ethics Review ID-RCB: 2019-A01829-48) for France and the Comité d'éthique hôpital-facultaire Saint Luc (N° B403201941338) for Belgium. It is carried out in accordance with the Declaration of Helsinki and Good Clinical Practice guidelines. The findings of this study will be disseminated in peer-reviewed journals and at scientific conferences. NCT04064489

    Hydrogeology of Stromboli volcano, Aeolian Islands (Italy) from the interpretation of resistivity tomograms, self-potential, soil temperature and soil CO2 concentration measurements

    Get PDF
    International audienceTo gain a better insight of the hydrogeology and the location of the main tectonic faults of Stromboli volcano in Italy, we collected electrical resistivity measurements, soil CO2 concentrations, temperature and self-potential measurements along two profiles. These two profiles started at the village of Ginostra in the southwest part of the island. The first profile (4.8 km in length) ended up at the village of Scari in the north east part of the volcano and the second one (3.5 km in length) at Forgia Vecchia beach, in the eastern part of the island. These data were used to provide insights regarding the position of shallow aquifers and the extension of the hydrothermal system. This large-scale study is complemented by two high-resolution studies, one at the Pizzo area (near the active vents) and one at Rina Grande where flank collapse areas can be observed. The Pizzo corresponds to one of the main degassing structure of the hydrothermal system. The main degassing area is localized along a higher permeability area corresponding to the head of the gliding plane of the Rina Grande sector collapse. We found that the self-potential data reveal the position of an aquifer above the villages of Scari and San Vincenzo. We provide an estimate of the depth of this aquifer from these data. The lateral extension of the hydrothermal system (resistivity ∼15-60 ohm m) is broader than anticipated extending in the direction of the villages of Scari and San Vincenzo (in agreement with temperature data recorded in shallow wells). The lateral extension of the hydrothermal system reaches the lower third of the Rina Grande sector collapse area in the eastern part of the island. The hydrothermal body in this area is blocked by an old collapse boundary. This position of the hydrothermal body is consistent with low values of the magnetization (<2.5 A m−1) from previously published work. The presence of the hydrothermal body below Rina Grande raises questions about the mechanical stability of this flank of the edifice

    Development of a PbWO4 Detector for Single-Shot Positron Annihilation Lifetime Spectroscopy at the GBAR Experiment

    Get PDF
    We have developed a PbWO4 (PWO) detector with a large dynamic range to measure the intensity of a positron beam and the absolute density of the ortho-positronium (o-Ps) cloud it creates. A simulation study shows that a setup based on such detectors may be used to determine the angular distribution of the emission and reflection of o-Ps to reduce part of the uncertainties of the measurement. These will allow to improve the precision in the measurement of the cross-section for the (anti)hydrogen formation by (anti)proton-positronium charge exchange and to optimize the yield of antihydrogen ion which is an essential parameter in the GBAR experiment

    Neonatal Metabolomic Profiles Related to Prenatal Arsenic Exposure

    Get PDF
    Prenatal inorganic arsenic (iAs) exposure is associated with health effects evident at birth and later in life. An understanding of the relationship between prenatal iAs exposure and alterations in the neonatal metabolome could reveal critical molecular modifications, potentially underpinning disease etiologies. In this study, nuclear magnetic resonance (NMR) spectroscopy-based metabolomic analysis was used to identify metabolites in neonate cord serum associated with prenatal iAs exposure in participants from the Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort, in GoÌmez Palacio, Mexico. Through multivariable linear regression, ten cord serum metabolites were identified as significantly associated with total urinary iAs and/or iAs metabolites, measured as %iAs, %monomethylated arsenicals (MMAs), and %dimethylated arsenicals (DMAs). A total of 17 metabolites were identified as significantly associated with total iAs and/or iAs metabolites in cord serum. These metabolites are indicative of changes in important biochemical pathways such as vitamin metabolism, the citric acid (TCA) cycle, and amino acid metabolism. These data highlight that maternal biotransformation of iAs and neonatal levels of iAs and its metabolites are associated with differences in neonate cord metabolomic profiles. The results demonstrate the potential utility of metabolites as biomarkers/indicators of in utero environmental exposure

    Adventive hydrothermal circulation on Stromboli volcano (Aeolian Islands, Italy) revealed by geophysical and geochemical approaches: Implications for general fluid flow models on volcanoes

    Get PDF
    International audienceOn March 15th 2007 a paroxysmal explosion occurred at the Stromboli volcano. This event generated a large amount of products, mostly lithic blocks, some of which impacted the ground as far as down to 200 m a.s.l., about 1.5 km far away from the active vents. Two days after the explosion, a new vapour emission was discovered on the north-eastern flank of the volcanic edifice, at 560 m a.s.l., just above the area called "Nel Cannestrà". This new vapour emission was due to a block impact. In order to investigate the block impact area to understand the appearance of the vapour emission, we conducted on May 2008 a multidisciplinary study involving Electrical Resistivity Tomography (ERT), Ground Penetrating Radar (GPR), Self-Potential (SP), CO2 soil diffuse degassing and soil temperature surveys. This complementary data set revealed the presence of an anomalous conductive body, probably related to a shallow hydrothermal level, at about 10-15 m depth, more or less parallel to the topography. It is the first time that such a hydrothermal fluid flow, with a temperature close to the water boiling point (76 °C) has been evidenced at Stromboli at this low elevation on the flank of the edifice. The ERT results suggest a possible link between (1) the main central hydrothermal system of Stromboli, located just above the plumbing system feeding the active vents, with a maximum of subsurface soil temperature close to 90 °C and limited by the NeoStromboli summit crater boundary and (2) the investigated area of Nel Cannestrà, at ~ 500 m a.s.l., a buried eruptive fissure active 9 ka ago. In parallel, SP and CO2 soil diffuse degassing measurements suggest in this sector at slightly lower elevation from the block impact crater a magmatic and hydrothermal fluid rising system along the N41° regional fault. A complementary ERT profile, on May 2009, carried out from the NeoStromboli crater boundary down to the block impact crater displayed a flank fluid flow apparently connected to a deeper system. The concept of shallow hydrothermal level have been compared to similar ERT results recently obtained on Mount Etna and La Fossa cone of Vulcano. This information needs to be taken into account in general fluid flow models on volcanoes. In particular, peripheral thermal waters (as those bordering the north-eastern coast of Stromboli) could be contaminated by hydrothermal and magmatic fluids coming from regional faults but also from the summit
    corecore