719 research outputs found
Conformal Quivers and Melting Molecules
Quiver quantum mechanics describes the low energy dynamics of a system of
wrapped D-branes. It captures several aspects of single and multicentered BPS
black hole geometries in four-dimensional supergravity such
as the presence of bound states and an exponential growth of microstates. The
Coulomb branch of an Abelian three node quiver is obtained by integrating out
the massive strings connecting the D-particles. It allows for a scaling regime
corresponding to a deep AdS throat on the gravity side. In this scaling
regime, the Coulomb branch is shown to be an invariant
multi-particle superconformal quantum mechanics. Finally, we integrate out the
strings at finite temperature---rather than in their ground state---and show
how the Coulomb branch `melts' into the Higgs branch at high enough
temperatures. For scaling solutions the melting occurs for arbitrarily small
temperatures, whereas bound states can be metastable and thus long lived.
Throughout the paper, we discuss how far the analogy between the quiver model
and the gravity picture, particularly within the AdS throat, can be taken.Comment: 49 pages, 16 figure
Comparison of breast and bowel cancer screening uptake patterns in a common cohort of South Asian women in England
Background: Inequalities in uptake of cancer screening by ethnic minority populations are well documented in a
number of international studies. However, most studies to date have explored screening uptake for a single cancer
only. This paper compares breast and bowel cancer screening uptake for a cohort of South Asian women invited to
undertake both, and similarly investigates these women's breast cancer screening behaviour over a period of fifteen
years.
Methods: Screening data for rounds 1, 2 and 5 (1989-2004) of the NHS breast cancer screening programme and for
round 1 of the NHS bowel screening pilot (2000-2002) were obtained for women aged 50-69 resident in the English
bowel screening pilot site, Coventry and Warwickshire, who had been invited to undertake breast and bowel cancer
screening in the period 2000-2002. Breast and bowel cancer screening uptake levels were calculated and compared
using the chi-squared test.
Results: 72,566 women were invited to breast and bowel cancer screening after exclusions. Of these, 3,539 were South
Asian and 69,027 non-Asian; 18,730 had been invited to mammography over the previous fifteen years (rounds 1 to 5).
South Asian women were significantly less likely to undertake both breast and bowel cancer screening; 29.9% (n =
1,057) compared to 59.4% (n = 40,969) for non-Asians (p < 0.001). Women in both groups who consistently chose to
undertake breast cancer screening in rounds 1, 2 and 5 were more likely to complete round 1 bowel cancer screening.
However, the likelihood of completion of bowel cancer screening was still significantly lower for South Asians; 49.5% vs.
82.3% for non-Asians, p < 0.001. South Asian women who undertook breast cancer screening in only one round were
no more likely to complete bowel cancer screening than those who decided against breast cancer screening in all
three rounds. In contrast, similar women in the non-Asian population had an increased likelihood of completing the
new bowel cancer screening test. The likelihood of continued uptake of mammography after undertaking screening in
round 1 differed between South Asian religio-linguistic groups. Noticeably, women in the Muslim population were less
likely to continue to participate in mammography than those in other South Asian groups.
Conclusions: Culturally appropriate targeted interventions are required to reduce observed disparities in cancer
screening uptakes
Wolbachia in the flesh: symbiont intensities in germ-line and somatic tissues challenge the conventional view of Wolbachia transmission routes
Symbionts can substantially affect the evolution and ecology of their hosts. The investigation of the tissue-specific distribution of symbionts (tissue tropism) can provide important insight into host-symbiont interactions. Among other things, it can help to discern the importance of specific transmission routes and potential phenotypic effects. The intracellular bacterial symbiont Wolbachia has been described as the greatest ever panzootic, due to the wide array of arthropods that it infects. Being primarily vertically transmitted, it is expected that the transmission of Wolbachia would be enhanced by focusing infection in the reproductive tissues. In social insect hosts, this tropism would logically extend to reproductive rather than sterile castes, since the latter constitute a dead-end for vertically transmission. Here, we show that Wolbachia are not focused on reproductive tissues of eusocial insects, and that non-reproductive tissues of queens and workers of the ant Acromyrmex echinatior, harbour substantial infections. In particular, the comparatively high intensities of Wolbachia in the haemolymph, fat body, and faeces, suggest potential for horizontal transmission via parasitoids and the faecal-oral route, or a role for Wolbachia modulating the immune response of this host. It may be that somatic tissues and castes are not the evolutionary dead-end for Wolbachia that is commonly thought
Supergoop Dynamics
We initiate a systematic study of the dynamics of multi-particle systems with
supersymmetric Van der Waals and electron-monopole type interactions. The
static interaction allows a complex continuum of ground state configurations,
while the Lorentz interaction tends to counteract this configurational fluidity
by magnetic trapping, thus producing an exotic low temperature phase of matter
aptly named supergoop. Such systems arise naturally in gauge
theories as monopole-dyon mixtures, and in string theory as collections of
particles or black holes obtained by wrapping D-branes on internal space
cycles. After discussing the general system and its relation to quiver quantum
mechanics, we focus on the case of three particles. We give an exhaustive
enumeration of the classical and quantum ground states of a probe in an
arbitrary background with two fixed centers. We uncover a hidden conserved
charge and show that the dynamics of the probe is classically integrable. In
contrast, the dynamics of one heavy and two light particles moving on a line
shows a nontrivial transition to chaos, which we exhibit by studying the
Poincar\'e sections. Finally we explore the complex dynamics of a probe
particle in a background with a large number of centers, observing hints of
ergodicity breaking. We conclude by discussing possible implications in a
holographic context.Comment: 35 pages,11 figures. v2: updated references to include a previous
proof of classical integrability, exchanged a figure for a prettier versio
Investigating the dynamics of surface-immobilized DNA nanomachines
Surface-immobilization of molecules can have a profound influence on their structure, function and dynamics. Toehold-mediated strand displacement is often used in solution to drive synthetic nanomachines made from DNA, but the effects of surface-immobilization on the mechanism and kinetics of this reaction have not yet been fully elucidated. Here we show that the kinetics of strand displacement in surface-immobilized nanomachines are significantly different to those of the solution phase reaction, and we attribute this to the effects of intermolecular interactions within the DNA layer. We demonstrate that the dynamics of strand displacement can be manipulated by changing strand length, concentration and G/C content. By inserting mismatched bases it is also possible to tune the rates of the constituent displacement processes (toehold-binding and branch migration) independently, and information can be encoded in the time-dependence of the overall reaction. Our findings will facilitate the rational design of surface-immobilized dynamic DNA nanomachines, including computing devices and track-based motors
Percutaneous versus surgical strategy for tracheostomy: protocol for a systematic review and meta-analysis of perioperative and postoperative complications
Background: Tracheostomy is one of the most frequently performed procedures in intensive care medicine. The two main approaches to form a tracheostoma are the open surgical tracheotomy (ST) and the interventional strategy of percutaneous dilatational tracheotomy (PDT). It is particularly important to the critically ill patients that both procedures are performed with high success rates and low complication frequencies. Therefore, the aim of this systematic review is to summarize and analyze existing and relevant evidence for peri- and postoperative parameters of safety. Methods/design: A systematic literature search will be conducted in The Cochrane Library, MEDLINE, LILACS, and Embase to identify all randomized controlled trials (RCTs) comparing peri- and postoperative complications between the two strategies and to define the strategy with the lower risk of potentially life-threatening events. A priori defined data will be extracted from included studies, and methodological quality will be assessed according to the recommendations of the Cochrane Collaboration. Discussion: The findings of this systematic review with proportional meta-analysis will help to identify the strategy with the lowest frequency of potentially life-threatening events. This may influence daily practice, and the data may be implemented in treatment guidelines or serve as the basis for planning further randomized controlled trials. Considering the critical health of these patients, they will particularly benefit from evidence-based treatment. Systematic review registration: PROSPERO CRD4201502196
Elevated atmospheric CO2 and humidity delay leaf fall in Betula pendula, but not in Alnus glutinosa or Populus tremula × tremuloides
Context: Anthropogenic activity has increased the level of atmospheric CO2, which is driving an increase of global temperatures and associated changes in precipitation patterns. At Northern latitudes, one of the likely consequences of global warming is increased precipitation and air humidity.
Aims: In this work, the effects of both elevated atmospheric CO2 and increased air humidity on trees commonly growing in northern European forests were assessed. Methods: The work was carried out under field conditions by using Free Air Carbon dioxide Enrichment (FACE) and Free Air Humidity Manipulation (FAHM) systems. Leaf litter fall was measured over 4 years (FACE) or 5 years (FAHM) to determine the effects of FACE and FAHM on leaf phenology. Results: Increasing air humidity delayed leaf litter fall in Betula pendula, but not in Populus tremula × tremuloides. Similarly, under elevated atmospheric CO2, leaf litter fall was delayed in Betula pendula, but not in Alnus glutinosa. Increased CO2 appeared to interact with periods of low precipitation in summer and high ozone levels during these periods to effect leaf fall.
Conclusions: This work shows that increased CO2 and humidity delay leaf fall, but this effect is species specific
A systematic analysis of host factors reveals a Med23-interferon-λ regulatory axis against herpes simplex virus type 1 replication
Herpes simplex virus type 1 (HSV-1) is a neurotropic virus causing vesicular oral or genital skin lesions, meningitis and other diseases particularly harmful in immunocompromised individuals. To comprehensively investigate the complex interaction between HSV-1 and its host we combined two genome-scale screens for host factors (HFs) involved in virus replication. A yeast two-hybrid screen for protein interactions and a RNA interference (RNAi) screen with a druggable genome small interfering RNA (siRNA) library confirmed existing and identified novel HFs which functionally influence HSV-1 infection. Bioinformatic analyses found the 358 HFs were enriched for several pathways and multi-protein complexes. Of particular interest was the identification of Med23 as a strongly anti-viral component of the largely pro-viral Mediator complex, which links specific transcription factors to RNA polymerase II. The anti-viral effect of Med23 on HSV-1 replication was confirmed in gain-of-function gene overexpression experiments, and this inhibitory effect was specific to HSV-1, as a range of other viruses including Vaccinia virus and Semliki Forest virus were unaffected by Med23 depletion. We found Med23 significantly upregulated expression of the type III interferon family (IFN-λ) at the mRNA and protein level by directly interacting with the transcription factor IRF7. The synergistic effect of Med23 and IRF7 on IFN-λ induction suggests this is the major transcription factor for IFN-λ expression. Genotypic analysis of patients suffering recurrent orofacial HSV-1 outbreaks, previously shown to be deficient in IFN-λ secretion, found a significant correlation with a single nucleotide polymorphism in the IFN-λ3 (IL28b) promoter strongly linked to Hepatitis C disease and treatment outcome. This paper describes a link between Med23 and IFN-λ, provides evidence for the crucial role of IFN-λ in HSV-1 immune control, and highlights the power of integrative genome-scale approaches to identify HFs critical for disease progression and outcome
Being there: a preliminary study examining the role of presence in Internet Gaming Disorder
Internet Gaming Disorder (IGD) has been introduced as an emerging mental health condition requiring further study. Associations between IGD and gaming presence (i.e., absorption in the virtual environment) have been implied. The aim of the present study was twofold: (a) to evaluate the extent to which presence contributes to IGD severity and, (b) to examine longitudinal differences in IGD according to the initial level of presence experienced. The participants comprising 125 emerging adults aged 18 to 29 years completed either: (i) three face-to-face assessments (one month apart, over three months) or (ii) a cross-sectional, online assessment. IGD was assessed with the nine-item IGD Scale Short Form and presence was assessed using the Presence Questionnaire. Regression and latent growth modelling analyses were conducted. Findings demonstrated that the level of gaming presence related to IGD severity but not to linear change in severity over a three-month period. The study shows that emergent adults who play internet games may be at a high risk of IGD given a more salient sense of being present within the gaming environment. Clinical implications considering prevention and intervention initiatives are discussed
Recommended from our members
Recent progress in understanding and projecting regional and global mean sea-level change
Considerable progress has been made in understanding the present and future regional and global sea level in the 2 years since the publication of the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change. Here, we evaluate how the new results affect the AR5’s assessment of (i) historical sea level rise, including attribution of that rise and implications for the sea level budget, (ii) projections of the components and of total global mean sea level (GMSL), and (iii) projections of regional variability and emergence of the anthropogenic signal. In each of these cases, new work largely provides additional evidence in support of the AR5 assessment, providing greater confidence in those findings. Recent analyses confirm the twentieth century sea level rise, with some analyses showing a slightly smaller rate before 1990 and some a slightly larger value than reported in the AR5. There is now more evidence of an acceleration in the rate of rise. Ongoing ocean heat uptake and associated thermal expansion have continued since 2000, and are consistent with ocean thermal expansion reported in the AR5. A significant amount of heat is being stored deeper in the water column, with a larger rate of heat uptake since 2000 compared to the previous decades and with the largest storage in the Southern Ocean. The first formal detection studies for ocean thermal expansion and glacier mass loss since the AR5 have confirmed the AR5 finding of a significant anthropogenic contribution to sea level rise over the last 50 years. New projections of glacier loss from two regions suggest smaller contributions to GMSL rise from these regions than in studies assessed by the AR5; additional regional studies are required to further assess whether there are broader implications of these results. Mass loss from the Greenland Ice Sheet, primarily as a result of increased surface melting, and from the Antarctic Ice Sheet, primarily as a result of increased ice discharge, has accelerated. The largest estimates of acceleration in mass loss from the two ice sheets for 2003–2013 equal or exceed the acceleration of GMSL rise calculated from the satellite altimeter sea level record over the longer period of 1993–2014. However, when increased mass gain in land water storage and parts of East Antarctica, and decreased mass loss from glaciers in Alaska and some other regions are taken into account, the net acceleration in the ocean mass gain is consistent with the satellite altimeter record. New studies suggest that a marine ice sheet instability (MISI) may have been initiated in parts of the West Antarctic Ice Sheet (WAIS), but that it will affect only a limited number of ice streams in the twenty-first century. New projections of mass loss from the Greenland and Antarctic Ice Sheets by 2100, including a contribution from parts of WAIS undergoing unstable retreat, suggest a contribution that falls largely within the likely range (i.e., two thirds probability) of the AR5. These new results increase confidence in the AR5 likely range, indicating that there is a greater probability that sea level rise by 2100 will lie in this range with a corresponding decrease in the likelihood of an additional contribution of several tens of centimeters above the likely range. In view of the comparatively limited state of knowledge and understanding of rapid ice sheet dynamics, we continue to think that it is not yet possible to make reliable quantitative estimates of future GMSL rise outside the likely range. Projections of twenty-first century GMSL rise published since the AR5 depend on results from expert elicitation, but we have low confidence in conclusions based on these approaches. New work on regional projections and emergence of the anthropogenic signal suggests that the two commonly predicted features of future regional sea level change (the increasing tilt across the Antarctic Circumpolar Current and the dipole in the North Atlantic) are related to regional changes in wind stress and surface heat flux. Moreover, it is expected that sea level change in response to anthropogenic forcing, particularly in regions of relatively low unforced variability such as the low-latitude Atlantic, will be detectable over most of the ocean by 2040. The east-west contrast of sea level trends in the Pacific observed since the early 1990s cannot be satisfactorily accounted for by climate models, nor yet definitively attributed either to unforced variability or forced climate change
- …
