83 research outputs found

    LSD1 cooperates with CTIP2 to promote HIV-1 transcriptional silencing

    Get PDF
    Microglial cells are the main HIV-1 targets in the central nervous system (CNS) and constitute an important reservoir of latently infected cells. Establishment and persistence of these reservoirs rely on the chromatin structure of the integrated proviruses. We have previously demonstrated that the cellular cofactor CTIP2 forces heterochromatin formation and HIV-1 gene silencing by recruiting HDAC and HMT activities at the integrated viral promoter. In the present work, we report that the histone demethylase LSD1 represses HIV-1 transcription and viral expression in a synergistic manner with CTIP2. We show that recruitment of LSD1 at the HIV-1 proximal promoter is associated with both H3K4me3 and H3K9me3 epigenetic marks. Finally, our data suggest that LSD1-induced H3K4 trimethylation is linked to hSET1 recruitment at the integrated provirus

    Knockout studies reveal an important role of <i>plasmodium</i> lipoic acid protein ligase a1 for asexual blood stage parasite survival

    Get PDF
    Lipoic acid (LA) is a dithiol-containing cofactor that is essential for the function of a-keto acid dehydrogenase complexes. LA acts as a reversible acyl group acceptor and 'swinging arm' during acyl-coenzyme A formation. The cofactor is post-translationally attached to the acyl-transferase subunits of the multienzyme complexes through the action of octanoyl (lipoyl): &lt;i&gt;N&lt;/i&gt;-octanoyl (lipoyl) transferase (LipB) or lipoic acid protein ligases (LplA). Remarkably, apicomplexan parasites possess LA biosynthesis as well as scavenging pathways and the two pathways are distributed between mitochondrion and a vestigial organelle, the apicoplast. The apicoplast-specific LipB is dispensable for parasite growth due to functional redundancy of the parasite's lipoic acid/octanoic acid ligases/transferases. In this study, we show that &lt;i&gt;LplA1&lt;/i&gt; plays a pivotal role during the development of the erythrocytic stages of the malaria parasite. Gene disruptions in the human malaria parasite &lt;i&gt;P.falciparum&lt;/i&gt; consistently were unsuccessful while in the rodent malaria model parasite &lt;i&gt;P. berghei&lt;/i&gt; the &lt;i&gt;LplA1&lt;/i&gt; gene locus was targeted by knock-in and knockout constructs. However, the &lt;i&gt;LplA1&lt;/i&gt; &lt;sup&gt;(-)&lt;/sup&gt; mutant could not be cloned suggesting a critical role of LplA1 for asexual parasite growth &lt;i&gt;in vitro&lt;/i&gt; and &lt;i&gt;in vivo&lt;/i&gt;. These experimental genetics data suggest that lipoylation during expansion in red blood cells largely occurs through salvage from the host erythrocytes and subsequent ligation of LA to the target proteins of the malaria parasite

    Achieving a cure for HIV infection: do we have reasons to be optimistic?

    Get PDF
    The introduction of highly active antiretroviral therapy (HAART) in 1996 has transformed a lethal disease to a chronic pathology with a dramatic decrease in mortality and morbidity of AIDS-related symptoms in infected patients. However, HAART has not allowed the cure of HIV infection, the main obstacle to HIV eradication being the existence of quiescent reservoirs. Several other problems have been encountered with HAART (such as side effects, adherence to medication, emergence of resistance and cost of treatment), and these motivate the search for new ways to treat these patients. Recent advances hold promise for the ultimate cure of HIV infection, which is the topic of this review. Besides these new strategies aiming to eliminate the virus, efforts must be made to improve current HAART. We believe that the cure of HIV infection will not be attained in the short term and that a strategy based on purging the reservoirs has to be associated with an aggressive HAART strategy

    Lack of complex N-glycans on HIV-1 envelope glycoproteins preserves protein conformation and entry function

    Get PDF
    The HIV-1 envelope glycoprotein complex (Env) is the focus of vaccine development aimed at eliciting humoral immunity. Env's extensive and heterogeneous N-linked glycosylation affects folding, binding to lectin receptors, antigenicity and immunogenicity. We characterized recombinant Env proteins and virus particles produced in mammalian cells that lack N-acetylglucosaminyltransferase I (GnTI), an enzyme necessary for the conversion of oligomannose N-glycans to complex N-glycans. Carbohydrate analyses revealed that trimeric Env produced in GnTI(-/-) cells contained exclusively oligomannose N-glycans, with incompletely trimmed oligomannose glycans predominating. The folding and conformation of Env proteins was little affected by the manipulation of the glycosylation. Viruses produced in GnTI(-/-) cells were infectious, indicating that the conversion to complex glycans is not necessary for Env entry function, although virus binding to the C-type lectin DC-SIGN was enhanced. Manipulating Env's N-glycosylation may be useful for structural and functional studies and for vaccine design. (C) 2010 Elsevier Inc. All rights reserved.Host-parasite interactio
    corecore