210 research outputs found

    Compartmentalized Phosphodiesterase-2 Activity Blunts β-Adrenergic Cardiac Inotropy via an NO/cGMP-Dependent Pathway

    Get PDF
    β-Adrenergic signaling via cAMP generation and PKA activation mediates the positive inotropic effect of catecholamines on heart cells. Given the large diversity of protein kinase A targets within cardiac cells, a precisely regulated and confined activity of such signaling pathway is essential for specificity of response. Phosphodiesterases (PDEs) are the only route for degrading cAMP and are thus poised to regulate intracellular cAMP gradients. Their spatial confinement to discrete compartments and functional coupling to individual receptors provides an efficient way to control local [cAMP] i in a stimulus-specific manner. By performing real-time imaging of cyclic nucleotides in living ventriculocytes we identify a prominent role of PDE2 in selectively shaping the cAMP response to catecholamines via a pathway involving β 3 -adrenergic receptors, NO generation and cGMP production. In cardiac myocytes, PDE2, being tightly coupled to the pool of adenylyl cyclases activated by β-adrenergic receptor stimulation, coordinates cGMP and cAMP signaling in a novel feedback control loop of the β-adrenergic pathway. In this, activation of β 3 -adrenergic receptors counteracts cAMP generation obtained via stimulation of β 1 /β 2 -adrenoceptors. Our study illustrates the key role of compartmentalized PDE2 in the control of catecholamine-generated cAMP and furthers our understanding of localized cAMP signaling

    Essential role of CFTR in PKA-dependent phosphorylation, alkalinization, and hyperpolarization during human dperm capacitation

    Get PDF
    Mammalian sperm require to spend a limited period of time in the female reproductive tract to become competent to fertilize in a process called capacitation. It is well established that HCO3 − is essential for capacitation because it activates the atypical soluble adenylate cyclase ADCY10 leading to cAMP production, and promotes alkalinization of cytoplasm, and membrane hyperpolarization. However, how HCO3 − is transported into the sperm is not well understood. There is evidence that CFTR activity is involved in the human sperm capacitation but how this channel is integrated in the complex signaling cascades associated with this process remains largely unknown. In the present work, we have analyzed the extent to which CFTR regulates different events in human sperm capacitation. We observed that inhibition of CFTR affects HCO3 −-entrance dependent events resulting in lower PKA activity. CFTR inhibition also affected cAMP/PKA-downstream events such as the increase in tyrosine phosphorylation, hyperactivated motility, and acrosome reaction. In addition, we demonstrated for the first time, that CFTR and PKA activity are essential for the regulation of intracellular pH, and membrane potential in human sperm. Addition of permeable cAMP partially recovered all the PKA-dependent events altered in the presence of inh-172 which is consistent with a role of CFTR upstream of PKA activation.Fil: Puga Molina, Lis del Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Pinto, Nicolás Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Torres Rodríguez, Paulina. Universidad Nacional Autónoma de México; MéxicoFil: Romarowski, Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Vicens Sanchez, Alberto. Universidad Nacional Autónoma de México; MéxicoFil: Visconti, Pablo E.. University of Massachussets; Estados UnidosFil: Darszon, Alberto. Universidad Nacional Autónoma de México; MéxicoFil: Treviño, Claudia L.. Universidad Nacional Autónoma de México; MéxicoFil: Buffone, Mariano Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentin

    cGMP-dependent protein kinase Iα associates with the antidepressant-sensitive serotonin transporter and dictates rapid modulation of serotonin uptake

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Na<sup>+</sup>/Cl<sup>-</sup>-dependent serotonin (5-hydroxytryptamine, 5-HT) transporter (SERT) is a critical element in neuronal 5-HT signaling, being responsible for the efficient elimination of 5-HT after release. SERTs are not only targets for exogenous addictive and therapeutic agents but also can be modulated by endogenous, receptor-linked signaling pathways. We have shown that neuronal A3 adenosine receptor activation leads to enhanced presynaptic 5-HT transport <it>in vitro </it>and an increased rate of SERT-mediated 5-HT clearance <it>in vivo</it>. SERT stimulation by A3 adenosine receptors derives from an elevation of cGMP and subsequent activation of both cGMP-dependent protein kinase (PKG) and p38 mitogen-activated protein kinase. PKG activators such as 8-Br-cGMP are known to lead to transporter phosphorylation, though how this modification supports SERT regulation is unclear.</p> <p>Results</p> <p>In this report, we explore the kinase isoform specificity underlying the rapid stimulation of SERT activity by PKG activators. Using immortalized, rat serotonergic raphe neurons (RN46A) previously shown to support 8-Br-cGMP stimulation of SERT surface trafficking, we document expression of PKGI, and to a lower extent, PKGII. Quantitative analysis of staining profiles using permeabilized or nonpermeabilized conditions reveals that SERT colocalizes with PKGI in both intracellular and cell surface domains of RN46A cell bodies, and exhibits a more restricted, intracellular pattern of colocalization in neuritic processes. In the same cells, SERT demonstrates a lack of colocalization with PKGII in either intracellular or surface membranes. In keeping with the ability of the membrane permeant kinase inhibitor DT-2 to block 8-Br-cGMP stimulation of SERT, we found that DT-2 treatment eliminated cGMP-dependent kinase activity in PKGI-immunoreactive extracts resolved by liquid chromatography. Similarly, treatment of SERT-transfected HeLa cells with small interfering RNAs targeting endogenous PKGI eliminated 8-Br-cGMP-induced regulation of SERT activity. Co-immunoprecipitation studies show that, in transporter/kinase co-transfected cells, PKGIα specifically associates with hSERT.</p> <p>Conclusion</p> <p>Our findings provide evidence of a physical and compartmentalized association between SERT and PKGIα that supports rapid, 8-Br-cGMP-induced regulation of SERT. We discuss a model wherein SERT-associated PKGIα supports sequentially the mobilization of intracellular transporter-containing vesicles, leading to enhanced surface expression, and the production of catalytic-modulatory SERT phosphorylation, leading to a maximal enhancement of 5-HT clearance capacity.</p

    A Generalized Allosteric Mechanism for cis-Regulated Cyclic Nucleotide Binding Domains

    Get PDF
    Cyclic nucleotides (cAMP and cGMP) regulate multiple intracellular processes and are thus of a great general interest for molecular and structural biologists. To study the allosteric mechanism of different cyclic nucleotide binding (CNB) domains, we compared cAMP-bound and cAMP-free structures (PKA, Epac, and two ionic channels) using a new bioinformatics method: local spatial pattern alignment. Our analysis highlights four major conserved structural motifs: 1) the phosphate binding cassette (PBC), which binds the cAMP ribose-phosphate, 2) the “hinge,” a flexible helix, which contacts the PBC, 3) the β2,3 loop, which provides precise positioning of an invariant arginine from the PBC, and 4) a conserved structural element consisting of an N-terminal helix, an eight residue loop and the A-helix (N3A-motif). The PBC and the hinge were included in the previously reported allosteric model, whereas the definition of the β2,3 loop and the N3A-motif as conserved elements is novel. The N3A-motif is found in all cis-regulated CNB domains, and we present a model for an allosteric mechanism in these domains. Catabolite gene activator protein (CAP) represents a trans-regulated CNB domain family: it does not contain the N3A-motif, and its long range allosteric interactions are substantially different from the cis-regulated CNB domains
    corecore