414 research outputs found

    Canopy structural modeling using object-oriented image classification and laser scanning

    Get PDF
    A terrestrial laser scanning (TLS) experiment was carried out in the EAGLE 2006 campaign to characterize and model the canopy structure of the Speulderbos forest. Semi-variogram analysis was used to describe spatial variability of the surface. The dependence of the spatial variability on the applied grid size showed, that in this forest spatial details of the digital surface model are lost in the case of larger than 0.3-0.4 m grid size. Voxel statistics was used for describing the density of the canopy structure. Five zones of the canopy were identified according to their density distribution. Basic geometric structures were tested for modeling the forest at the individual tree level. The results create a firm basis for modeling physical processes in the canopy

    Impact damage resistance of composite fuselage structure, part 2

    Get PDF
    The strength of laminated composite materials may be significantly reduced by foreign object impact induced damage. An understanding of the damage state is required in order to predict the behavior of structure under operational loads or to optimize the structural configuration. Types of damage typically induced in laminated materials during an impact event include transverse matrix cracking, delamination, and/or fiber breakage. The details of the damage state and its influence on structural behavior depend on the location of the impact. Damage in the skin may act as a soft inclusion or affect panel stability, while damage occurring over a stiffener may include debonding of the stiffener flange from the skin. An experiment to characterize impact damage resistance of fuselage structure as a function of structural configuration and impact threat was performed. A wide range of variables associated with aircraft fuselage structure such as material type and stiffener geometry (termed, intrinsic variables) and variables related to the operating environment such as impactor mass and diameter (termed, extrinsic variables) were studied using a statistically based design-of-experiments technique. The experimental design resulted in thirty-two different 3-stiffener panels. These configured panels were impacted in various locations with a number of impactor configurations, weights, and energies. The results obtained from an examination of impacts in the skin midbay and hail simulation impacts are documented. The current discussion is a continuation of that work with a focus on nondiscrete characterization of the midbay hail simulation impacts and discrete characterization of impact damage for impacts over the stiffener

    Temperature dependence of electrical properties of electrodeposited Ni-based nanowires

    Get PDF
    The influence of annealing on the microstructure and the electrical properties of cylindrical nickel-based nanowires has been investigated. Nanowires of nickel of nominally 200 nm diameter and of permalloy (Py) of nominally 70 nm were fabricated by electrochemical deposition into nanoporous templates of polycarbonate and anodic alumina, respectively. Characterization was carried out on as-grown nanowires and nanowires heat treated at 650°C. Transmission electron microscopy and diffraction imaging of as-grown and annealed nanowires showed temperature-correlated grain growth of an initially nano-crystalline structure with ≤8 nm (Ni) and ≤20 nm (Py) grains towards coarser poly-crystallinity with grain sizes up to about 160 nm (Ni) and 70 nm (Py), latter being limited by the nanowire width. The electrical conductivity of individual as-grown and annealed Ni nanowires was measured in situ within a scanning electron microscope environment. At low current densities, the conductivity of annealed nanowires was estimated to have risen by a factor of about two over as-grown nanowires. We attribute this increase, at least in part, to the observed grain growth. The annealed nanowire was subsequently subjected to increasing current densities. Above 120 kA mm -2 the nanowire resistance started to rise. At 450 kA mm -2 the nanowire melted and current flow ceased

    A development cooperation Erasmus Mundus partnership for capacity building in earthquake mitigation science and higher education

    Get PDF
    Successful practices have shown that a community’s capacity to manage and reduce its seismic risk relies on capitalization on policies, on technology and research results. An important role is played by education, than contribute to strengthening technical curricula of future practitioners and researchers through university and higher education programs. EUNICE is a European Commission funded higher education partnership for international development cooperation with the objective to build capacity of individuals who will operate at institutions located in seismic prone Asian Countries. The project involves five European Universities, eight Asian universities and four associations and NGOs active in advanced research on seismic mitigation, disaster risk management and international development. The project consists of a comprehensive mobility scheme open to nationals from Afghanistan, Bangladesh, China, Nepal, Pakistan, Thailand, Bhutan, India, Indonesia, Malaysia, Maldives, North Korea, Philippines, and Sri Lanka who plan to enroll in school or conduct research at one of five European partner universities in Italy, Greece and Portugal. During the 2010-14 time span a total number of 104 mobilities are being involved in scientific activities at the undergraduate, masters, PhD, postdoctoral and academic-staff exchange levels. Researchers, future policymakers and practitioners build up their curricula over a range of disciplines in the fields of earthquake engineering, seismology, disaster risk management and urban planning

    Effect of annealing on the electrical and magnetic properties of electrodeposited Ni and permalloy nanowires

    Get PDF
    The influence of annealing on the microstructure and the electrical and magnetic properties of cylindrical nickel-based nanowires has been investigated. Nanowires of nickel of ~275 nm diameter and of permalloy (Py) of ~70 nm diameter were fabricated by electrochemical deposition into nanoporous templates of polycarbonate and anodic alumina, respectively. Characterization was carried out on as-grown and up to 650 °C heat-treated nanowires. Transmission electron microscopy imaging and diffraction of the nanowires showed a temperature-correlated grain growth of an initially nanocrystalline structure (untreated) with <8 nm (Ni) and <20 nm (Py) grains towards coarser poly-crystallinity after heat treatment with grains up to ~160 nm (Ni) and ~70 nm (Py), the latter being limited by the nanowire width. The electrical conductivity of individual as-grown and 650 °C annealed Ni nanowires was measured in-situ by scanning electron microscopy. At low current densities, the conductivity of annealed nanowires was estimated to have doubled over as-grown nanowires. We attribute this increase to the observed grain growth. The annealed nanowire was subsequently subjected to increasing current densities. Above 120 kA.mm−2 the nanowire resistance started to rise. At 450 kA.mm−2, the nanowire melted and current flow ceased. Magnetometry of as-grown and annealed nanowire arrays showed them to display quasi-thin film magnetic properties. Coercivity and saturation field were inversely correlated in annealed wires and a 25% tunability in these properties was achieved at just 200 °C
    corecore