8 research outputs found

    Финансовое обеспечение деятельности туристического предприятия

    Get PDF
    Целью статьи является разработка рекомендаций по повышению эффективности финансового обеспечения деятельности туристического предприятия, определение приоритетных путей совершенствования финансовых показателей его деятельности

    Daratumumab displays in vitro and in vivo anti-tumor activity in models of B cell non-Hodgkin lymphoma and improves responses to standard chemo-immunotherapy regimens

    Get PDF
    CD38 is expressed in several types of non-Hodgkin lymphoma and constitutes a promising target for antibody-based therapy. Daratumumab (Darzalex) is a first-in-class anti-CD38 antibody approved for the treatment of relapsed/refractory multiple myeloma. It has also demonstrated clinical activity in Waldenstrom macroglobulinaemia and amyloidosis. Here, we have evaluated the activity and mechanism of action of daratumumab in preclinical in vitro and in vivo models of mantle cell lymphoma, follicular lymphoma and diffuse large B cell lymphoma, as monotherapy or in combination with standard chemo-immunotherapy. In vitro, daratumumab engages Fc-mediated cytotoxicity by antibody-dependent cell cytotoxicity and antibody-dependent cell phagocytosis in all lymphoma subtypes. In the presence of human serum, complement-dependent cell cytotoxicity was marginally engaged. We demonstrated by Selective Plane Illumination Microscopy that daratumumab fully penetrated a 3D lymphoma organoid and decreased organoid volume. In vivo, daratumumab completely prevents tumor outgrowth in models of mantle cell and follicular lymphoma, and shows comparable activity to rituximab in a disseminated in vivo model of blastic mantle cell lymphoma. Moreover, daratumumab improves overall survival in a mouse model of transformed CD20dim follicular lymphoma, where rituximab showed limited activity. Daratumumab potentiates the antitumor activity of CHOP and R-CHOP in mantle cell and follicular lymphoma xenografts. Furthermore, in a patient-derived diffuse large B cell lymphoma xenograft model, daratumumab anti-tumor activity was comparable to R-CHOP and the addition of daratumumab to either CHOP or R-CHOP led to full tumor regression. In summary, daratumumab constitutes a novel therapeutic opportunity in certain scenarios and these results warrant further clinical development

    Daratumumab binds to mobilized CD34+ cells of myeloma patients in vitro without cytotoxicity or impaired progenitor cell growth.

    No full text
    BackgroundThe monoclonal antibody daratumumab, approved for treating myeloma, targets CD38, a protein on myeloma and also on CD34+ hematopoietic progenitor cells. Because mobilized CD34+ cells are critical for stem cell transplant, we investigated the in vitro activity of daratumumab on mobilized CD34+ cells from myeloma patients with no prior exposure to daratumumab.MethodsWe determined the number of CD38 molecules per CD34+ cell, and whether daratumumab bound to CD34+ cells, whether C1q bound to daratumumab-coated CD34+ cells and whether daratumumab-related complement-dependent cytotoxicity (CDC) occurred. We also examined CD34+ cell progenitor cell colony capacity in assays with pre-plating incubation of CD34+ cells with daratumumab alone or with daratumumab and the CD59 inhibitory antibody BRIC229, and also assessed CD34+ cell responses to increasing doses of daratumumab in caspase 3/7 activity assays.ResultsAlthough 75% of mobilized CD34+ cells co-express CD38, CD38 was minimally present on CD34+ cells compared to Daudi and KG-1 controls, C1q did not bind to daratumumab-coated CD34+ cells, and CDC did not occur. CD34+ cells incubated in complement-rich human serum with daratumumab alone or with daratumumab and BRIC229, and then plated in progenitor cell assays, produced similar numbers of colonies as controls. In progenitor cell assays with cryopreserved or fresh unselected or CD34-selected cells, daratumumab did not affect progenitor cell capacity, and in caspase 3/7 activity assays CD34+ cells were not affected by increasing doses of daratumumab.ConclusionIn vitro, daratumumab is not toxic to mobilized CD34+ progenitor cells from myeloma patients

    Mammary tumor-derived CCL2 enhances pro-metastatic systemic inflammation through upregulation of IL1β in tumor-associated macrophages

    Get PDF
    Patients with primary solid malignancies frequently exhibit signs of systemic inflammation. Notably, elevated levels of neutrophils and their associated soluble mediators are regularly observed in cancer patients, and correlate with reduced survival and increased metastasis formation. Recently, we demonstrated a mechanistic link between mammary tumor-induced IL17-producing γδ T cells, systemic expansion of immunosuppressive neutrophils and metastasis formation in a genetically engineered mouse model for invasive breast cancer. How tumors orchestrate this systemic inflammatory cascade to facilitate dissemination remains unclear. Here we show that activation of this cascade relies on CCL2-mediated induction of IL1β in tumor-associated macrophages. In line with these findings, expression of CCL2 positively correlates with IL1Β and macrophage markers in human breast tumors. We demonstrate that blockade of CCL2 in mammary tumor-bearing mice results in reduced IL17 production by γδ T cells, decreased neutrophil expansion and enhanced CD8+ T cell activity. These results highlight a new role for CCL2 in facilitating the breast cancer-induced pro-metastatic systemic inflammatory γδ T cell–IL17–neutrophil axis.Pattern Recognition and Bioinformatic

    Daratumumab displays in vitro and in vivo anti-tumor activity in models of B cell non-Hodgkin lymphoma and improves responses to standard chemo-immunotherapy regimens

    No full text
    CD38 is expressed in several types of non-Hodgkin lymphoma and constitutes a promising target for antibody-based therapy. Daratumumab (Darzalex) is a first-in-class anti-CD38 antibody approved for the treatment of relapsed/refractory multiple myeloma. It has also demonstrated clinical activity in Waldenstrom macroglobulinaemia and amyloidosis. Here, we have evaluated the activity and mechanism of action of daratumumab in preclinical in vitro and in vivo models of mantle cell lymphoma, follicular lymphoma and diffuse large B cell lymphoma, as monotherapy or in combination with standard chemo-immunotherapy. In vitro, daratumumab engages Fc-mediated cytotoxicity by antibody-dependent cell cytotoxicity and antibody-dependent cell phagocytosis in all lymphoma subtypes. In the presence of human serum, complement-dependent cell cytotoxicity was marginally engaged. We demonstrated by Selective Plane Illumination Microscopy that daratumumab fully penetrated a 3D lymphoma organoid and decreased organoid volume. In vivo, daratumumab completely prevents tumor outgrowth in models of mantle cell and follicular lymphoma, and shows comparable activity to rituximab in a disseminated in vivo model of blastic mantle cell lymphoma. Moreover, daratumumab improves overall survival in a mouse model of transformed CD20dim follicular lymphoma, where rituximab showed limited activity. Daratumumab potentiates the antitumor activity of CHOP and R-CHOP in mantle cell and follicular lymphoma xenografts. Furthermore, in a patient-derived diffuse large B cell lymphoma xenograft model, daratumumab anti-tumor activity was comparable to R-CHOP and the addition of daratumumab to either CHOP or R-CHOP led to full tumor regression. In summary, daratumumab constitutes a novel therapeutic opportunity in certain scenarios and these results warrant further clinical development
    corecore