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ABSTRACT
Patients with primary solid malignancies frequently exhibit signs of systemic inflammation. Notably, elevated
levels of neutrophils and their associated soluble mediators are regularly observed in cancer patients, and
correlate with reduced survival and increased metastasis formation. Recently, we demonstrated a
mechanistic link between mammary tumor-induced IL17-producing gd T cells, systemic expansion of
immunosuppressive neutrophils and metastasis formation in a genetically engineered mouse model for
invasive breast cancer. How tumors orchestrate this systemic inflammatory cascade to facilitate
dissemination remains unclear. Here we show that activation of this cascade relies on CCL2-mediated
induction of IL1b in tumor-associated macrophages. In line with these findings, expression of CCL2 positively
correlates with IL1B and macrophage markers in human breast tumors. We demonstrate that blockade of
CCL2 in mammary tumor-bearing mice results in reduced IL17 production by gd T cells, decreased
neutrophil expansion and enhanced CD8C T cell activity. These results highlight a new role for CCL2 in
facilitating the breast cancer-induced pro-metastatic systemic inflammatory gd T cell – IL17 – neutrophil axis.
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Introduction

Over 90% of breast cancer deaths are due to complications as a
consequence of metastasis.1 There is an urge for the identifica-
tion of new therapeutic targets through a better understanding
of the molecular mechanisms underlying breast cancer metas-
tasis formation. Emerging evidence indicates that metastasis is
regulated to a great extent by reciprocal interactions between
cancer cells and immune cells in the tumor microenviron-
ment.2,3 In addition to a local inflammatory microenvironment,
tumors frequently induce a systemic inflammatory state in dis-
tant organs through the release of various mediators that mobi-
lize and activate immune cells to support metastasis.2,4 As such,
systemic inflammation represents an interesting target to pre-
vent and/or to treat metastatic disease.

Previously, were ported that neutrophils exert pro-metastatic
functions by suppressing anti-tumor CD8C T cells in the
K14cre;Cdh1F/F;Trp53F/F (KEP) conditional mouse model of
invasive breast cancer.5 The systemic expansion and polariza-
tion of these immunosuppressive neutrophils is elicited by
tumor-associated macrophage (TAM)-derived interleukin (IL)
1b that activates IL17-producing gd T cells leading to increased

systemic levels of G-CSF, a cytokine known for its role in gran-
ulopoiesis.6 However, the mediators that initiate this systemic
inflammatory cascade from the primary tumor are unknown.

In the current study, we identify the pro-inflammatory che-
mokine (C-C motif) ligand 2 (CCL2) as an important mam-
mary tumor-derived factor that stimulates the gd T cell – IL17
– neutrophil axis. CCL2 is a cytokine largely known for its
involvement in the recruitment of CCR2C monocytes from the
bone marrow to other sites in the body where they differentiate
into macrophages.7 In breast cancer patients, high CCL2
expression is linked to macrophage infiltration and poor prog-
nosis.8,9 Here, we show that CCL2 initiates the gd T cell – IL17
– neutrophil axis by promoting the expression of TAM-derived
IL1b. In human breast cancers, CCL2 expression is positively
correlated with IL1B and macrophage marker CD68 across all
breast cancer subtypes, supporting our findings that these two
cytokines are co-dependent. In vivo blockade of CCL2 in mam-
mary tumor-bearing KEP mice results in reduced IL1b expres-
sion in tumor-associated macrophages and reduced IL17-
producing gd T cells, impaired expansion of immunosuppres-
sive neutrophils and activation of CD8C T cells. These data
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identify CCL2 as a key regulator of the mammary tumor-
induced immunosuppressive systemic inflammatory gd T cell –
IL17 – neutrophil axis that drives metastasis.

Results

Mammary tumor-bearing K14cre;Cdh1F/F;Trp53F/F (KEP)
mice show elevated intratumoral and systemic CCL2 levels

Previously, we analyzed the expression profile of a panel of
cytokines and chemokines in KEP mammary tumors and
mammary glands from wild-type mice.5 Among these mol-
ecules, CCL2 was the most upregulated cytokine in KEP
tumor tissue (Fig. 1A). We also found increased CCL2
serum levels in mammary tumor-bearing KEP mice com-
pared to wild-type littermates (Fig. 1B). RNA in situ
hybridization analysis showed that Ccl2 mRNA in KEP
mammary tumors is expressed in both stromal cells and
tumor cells (Fig. 1C). Ccl2 expression in wild-type mam-
mary glands was almost undetectable (Fig. 1C). Gene
expression analysis on sorted cell populations from KEP
tumors revealed that many cell types express Ccl2

(Fig. 1D), but due to their high abundance in KEP tumors,
macrophages and tumor cells comprise the main cellular
source (Fig. 1E).

CCL2 influences breast cancer metastasis

Several studies report a pro-metastatic role for CCL2 in
breast cancer by recruiting monocytes and macrophages to
primary tumors and metastatic sites.10-12 To determine the
functional significance of CCL2 during metastasis in the
KEP model, we used our previously described KEP-based
model of spontaneous breast cancer metastasis.5,13 Mice
bearing orthotopically transplanted KEP mammary tumors
were treated with anti-CCL2 in a neo-adjuvant and adju-
vant setting (Fig. 2A). Neo-adjuvant CCL2 blockade did
not affect primary tumor growth (Fig. 2B), but increased
the metastatic burden in the lungs (Fig. 2C) without affect-
ing metastasis-related survival (Fig. 2D). These data corrob-
orate previous findings that cessation of CCL2 blockade
can enhance metastasis due to a cytokine rebound effect.14

To circumvent this undesirable effect, adjuvant treatment
was initiated after surgical removal of the primary tumor

Figure 1. CCL2 expression in mammary tumor-bearing K14cre;Cdh1F/F;Trp53F/(F)(KEP) mice. (A) Protein expression of CCL2 in KEP mammary tumors compared to wild-type
mammary glands was determined using a Luminex multiplex cytokine array (n D 5 per group; Mann-Whitney U test). (B) Serum levels of CCL2 in wild-type mice and
mammary tumor-bearing KEP mice (n D 6 per group; Mann-Whitney U test). (A-B) are determined by a Luminex-based cytokine array. (C) RNA in situ hybridization of
Ccl2 mRNA in wild-type mammary gland (left) and KEP mammary tumors (right). Representative images are shown. Scale bar 100 mm. (D, E) Tumor cells
(CD31—CD45—CD11b—), lymphocytes (CD45CCD11b—), fibroblasts (PDGFRbCCD31—CD45—CD11b—), endothelial cells (CD31CCD45—CD11b—), macrophages
(CD11bCF4/80C), dendritic cells (DC) (CD11bCF4/80—CD11cC), neutrophils (CD11bCF4/80—Ly6GCLy6Clo) and monocytes (CD11bCF4/80—Ly6G—Ly6Chi) were isolated
from KEP mammary tumors using FACS (n D 6 per group). D) Ccl2 gene expression was determined by quantitative RT-PCR and corrected for b-actin. E) Quantification of
intratumoral cell populations by flow cytometry. (�� p < 0.01). All data are mean § s.e.m.
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Figure 2. Effect of neo-adjuvant and adjuvant CCL2 blockade on spontaneous breast cancer metastasis. (A) Schematic representation of the KEP-based mouse
model for spontaneous breast cancer metastasis treated with neo-adjuvant or adjuvant anti-CCL2. (B) Primary tumor growth kinetics upon neo-adjuvant CCL2
blockade (n D 15 per group). (C) Quantification of lung metastatic nodules in mice treated with neo-adjuvant anti-CCL2 (n D 8) versus controls (n D 11) that
succumb due to respiratory distress. (�p < 0.05, Mann-Whitney U test). (D) Metastasis-related survival of mice treated with neo-adjuvant anti-CCL2 versus con-
trols (n D 15 per group). Animals that succumb due to local relapse of the primary tumor are censored. (p D 0.7362) Statistical analysis was conducted using
Log-rank test. (E) Representative images of cytokeratin-8-stained lung sections, and quantification of lung metastatic nodules in mice treated with adjuvant
anti-CCL2 (n D 8) or controls (n D 10) that succumb due to respiratory distress. Scale bar 5 mm. (p D 0.1649) Statistical analysis was conducted using Mann-
Whitney U test. (F) Metastasis-related survival of mice treated with adjuvant anti-CCL2 (n D 14) compared to controls (n D 13). (p D 0.0606) Statistical analysis
was conducted using the Log-rank test. (G) Primary tumor growth kinetics of transgenic KEP mice bearing spontaneous mammary tumors treated with anti-
CCL2 (n D 6) compared to controls (n D 15). (H) Proportion of mammary-tumor bearing transgenic KEP mice bearing spontaneous pulmonary metastasis after
CCL2 blockade (n D 21) or controls (n D 52). (p D 0.2437) Statistical analysis was conducted using Chi-square test. All data are mean § s.e.m.
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and continued until animals were sacrificed due to clinical
signs of metastatic disease. Conversely to our previous find-
ings, adjuvant CCL2 blockade reduced metastatic burden in
the lung (Fig. 2E), albeit not statistically significant, and
resulted in a modest survival benefit (Fig. 2F). Likewise,
CCL2 blockade in KEP mice bearing spontaneously arising
mammary tumors also resulted in decreased pulmonary
metastases (Fig. 2H), without affecting primary tumor
growth (Fig. 2G). Together, the data generated in both the
transplantation-based metastasis model and the genetically
engineered KEP model, suggest that CCL2 functions as a
pro-metastatic cytokine. However, these data also empha-
size the complexity of targeting CCL2 in breast cancer
metastasis, as described by others.14,15

CCL2 drives the systemic inflammatory gd T cell – IL17 –
neutrophil axis

To understand the mechanisms of CCL2 action during
breast cancer progression and metastasis, we analyzed the
expression of the CCL2 receptor, CCR2, on immune cell
populations in the circulation of mammary tumor-bearing
KEP mice. Flow cytometric analysis revealed that

monocytes and gd T cells express high levels of CCR2
(Fig. 3A and Fig. S1A). Unlike other reports,10,11 we found
no effect of antibody-mediated CCL2 neutralization on the
proportion of circulating monocytes in KEP mice
(Fig. S1B).

Because spontaneous metastasis in the KEP model is
driven by IL17-producing gd T cells and subsequent expan-
sion of immunosuppressive neutrophils,5 we assessed
whether CCL2 affects the activation of gd T cells. Based on
the expression of co-stimulatory factor CD27, gd T cells
can be phenotypically subdivided into IFNg-producing
CD27C gd T cells and IL17-producing CD27— gd T cells.16

In mammary tumor-bearing KEP mice we could find these
distinct subpopulations of gd T cells and we observed that
CCR2 expression is restricted to the IL17-producing
CD27— gd T cell population (Fig. 3B, C). The proportion
of CD27—CCR2C gd T cells within the total gd T cell pop-
ulation was significantly increased throughout all organs
analyzed in mammary tumor-bearing KEP animals com-
pared to wild-type littermates (Fig. 3D).

Blockade of CCL2 with neutralizing antibodies in KEP mice
bearing spontaneously arising mammary tumors did not affect
total gd T cell proportions (Fig. S1C), but resulted in a

Figure 3. CCR2 is expressed on monocytes and IL17-producing CD27— gd T cells. (A) Representative flow cytometry histograms showing CCR2 expression (red) compared
to fluorescence minus one (FMO) controls (gray) on circulating immune cell populations in mammary tumor-bearing KEP mice. Gating strategy is described in Fig. S1A. (B)
Representative dot plots of CCR2 and CD27 expression on IL17- and IFNg-producing gd T cells in lungs of genetically engineered KEP mice (tumor »225 mm2) measured
by flow cytometry. (C) Representative histogram of CCR2 expression on IL17C (red) and IL17— gd T cells (gray). (D) Quantification of the proportion of CD27—CCR2C cells
gated on total gd T cells in different organs of wild-type (n D 5) versus KEP mice (tumor »225 mm2) (n D 7). (�p < 0.05, ��p < 0.01, Mann-Whitney U test). All data are
mean § s.e.m.
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significant reduction of the percentage of IL17-producing gd T
cells in blood, lymph nodes and lungs (Fig. 4A). Consistently, a
2-fold reduction in IL17 serum levels was also observed in
mammary tumor-bearing KEP mice treated with anti-CCL2
(Fig. 4B).

We previously showed that in the KEP model, IL17-produc-
ing gd T cells increase systemic G-CSF levels, resulting in sys-
temic accumulation of immunosuppressive neutrophils.5

Consistent with the reduced IL17 serum levels, CCL2 blockade
in KEP mice also decreased G-CSF serum levels (Fig. 4C). In
addition, flow cytometric analysis revealed that the total pro-
portion of CD11bCLy6GCLy6CC neutrophils was reduced in
various organs after CCL2 blockade (Fig. 4D). As observed in
metastatic breast cancer patients,17 one hallmark of KEP
tumor-induced neutrophils is the expression of haematopoietic
stem cell marker cKIT on a proportion of these cells.5 In anti-
CCL2 treated KEP mice the proportion of cKITC neutrophils
was significantly reduced in all organs (Fig. 4E), indicating that
CCL2 blockade reverts the tumor-induced emergence of circu-
lating immature neutrophils. Of note, we excluded that these

changes in immune parameters are a consequence of Fc recep-
tor-mediated activation of immune cells by the Fc part of the
anti-CCL2 antibody, by showing that the isotype-matched chi-
meric rat/mouse C1322 control antibody did not influence any
of the immune parameters (Fig. S2).

Tumor-educated neutrophils in mammary tumor-bearing
KEP mice exert their pro-metastatic function through suppres-
sion of CD8C T cells.5 Since CCL2 blockade reduced mammary
tumor-induced expansion of neutrophils in KEP mice, we
hypothesized that CCL2 blockade would alleviate CD8C T cell
suppression in metastatic lungs. To answer this question, we
turned to the spontaneous metastasis model based on ortho-
topic transplantation of KEP tumors in mice, since the pene-
trance of lung metastases in this model is high. Indeed, the
proportion of interferon (IFN)-g producing CD8C T cells
(Fig. 4F and Fig. S1E) and the proportion of CD44CCD62L—

CD8C T cells (Fig. 4G and Fig. S1F) in the lungs was signifi-
cantly increased in anti-CCL2 treated animals compared to
controls, while total CD8C T cell proportions remained unaf-
fected (Fig. S1D). Together these data demonstrate that CCL2

Figure 4. Mammary tumor-derived CCL2 promotes systemic inflammation characterized by IL17-producing gd T cells, neutrophil expansion and suppression of T cells.
KEP mice were treated with anti-CCL2 or PBS (Ctrl) during primary tumor growth starting at 25 mm2. Animals were sacrificed when tumors reached 225 mm2 and organs
were collected for flow cytometric analysis. Proportions of IL17C cells gated on total gd T cells in blood, spleen, lymph nodes and lungs of KEP mice treated with anti-
CCL2 (nD 8) and controls (nD 10) (A). Serum levels of IL17A (B) and G-CSF (C) in KEP mice determined by cytometric bead array (nD 6 per group). Flow cytometric anal-
ysis of the proportions of total CD11bCLy6GCLy6CC neutrophils (gated on total CD45C cells) (D) and cKITC neutrophils (gated on total neutrophils) (E) in blood, spleen,
lymph nodes and lungs of KEP mice treated with anti-CCL2 (n D 6) and controls (n D 10). Flow cytometric analysis of intracellular IFNg staining in CD8C T cells (F) and
the proportion of CD62L—CD44C effector CD8C T cells of total CD8C T cells (G) in lungs of mice bearing orthotopically transplanted KEP tumors (»100 mm2) treated with
anti-CCL2 (n D 6) or controls (n D 5). Gating strategy is described in Fig. S1E, F. (�p < 0.05, ��p < 0.01, ���p < 0.001, Mann-Whitney U test). All data are mean § s.e.m.
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contributes to mammary tumor-induced immunosuppression
at distant metastatic sites, which is associated with activation of
IL17-expressing gd T cells and G-CSF-dependent expansion of
immunosuppressive neutrophils.

CCL2 is not sufficient to induce IL17 expression from gd

T cells

To understand how CCL2 activates the gd T cell – IL17 – neu-
trophil axis, we assessed whether CCL2 is sufficient to induce
IL17 expression from gd T cells in vivo, since these cells express
the CCR2 receptor (Fig. 3A and Fig. S1A). We treated wild-
type tumor-free mice with recombinant murine CCL2 (rCCL2)
and analyzed the proportion of IL17C gd T cells in the circula-
tion. Administration of rCCL2 did not induce IL17 expression
from gd T cells (Fig. S3A) and did not expand the neutrophil
population (Fig. S3B). rCCL2 did increase circulating
CD11bCLy6Chi monocytes confirming that rCCL2 was func-
tional in vivo (Fig. S3C). Similar results were obtained in gd T
cell-deficient Tcrd—/— mice where rCCL2 induced an increase
in blood monocytes but did not elicit neutrophil expansion
(Fig. S3D), demonstrating that CCL2 is not sufficient to induce
neutrophil expansion in the absence of gd T cells.

We took another approach by sorting CD27— and CD27C

gd T cells from mammary tumor-bearing KEP mice. These cells
were cultured ex vivo in the presence or absence of rCCL2.
While the positive control rIL23 18 induced IL17 expression
from CD27— gd T cells, rCCL2 did not (Fig. S3E). As expected,
CD27C gd T cells did not produce IL17 (Fig. S3E). Together,
these results indicate that CCL2 is not sufficient to induce IL17
expression from gd T cells or to induce the expansion of neu-
trophils, and thus might require a cancer-associated intermedi-
ate cell type or mediator.

CCL2 induces IL1b expression from CCR2C TAMs to drive
the gd T cell – IL17 – neutrophil axis

Hypothesizing that CCL2 exerts its effect via an intratumoral
component, we next examined the presence of potential CCL2-
responsive cells at the primary tumor site. Flow cytometric
analysis of mammary tumors in the conditional KEP mice
revealed that KEP cancer cells do not express CCR2 (Fig. S4B).
As expected, CCR2 is abundantly expressed on CD11bCF4/
80CCD206C TAMs and CD11bCF4/80—Ly6G—Ly6Chi mono-
cytes, and to a lesser extent on CD11bCF4/80—Ly6GCLy6Clo

neutrophils (Fig. 5A, B and Fig. S4A, B). Nevertheless, anti-
body-mediated neutralization of CCL2 did not alter the intratu-
moral accumulation of these myeloid cells (Fig. 5C).

Previously, we showed that IL1b induces IL17 expression in
gd T cells in mammary tumor-bearing KEP mice.5 Antibody-
mediated neutralization of IL1b in tumor-bearing KEP mice
inhibited IL17 production by gd T cells and normalized sys-
temic neutrophil levels.5 We identified neutrophils and TAMs
as the main producers of Il1b, but due to their abundance at
the primary tumor site (Fig. 1E), TAMs can be appointed as
the main source of IL1b in the tumor microenvironment.5 We
therefore hypothesized that CCL2 might influence the pheno-
type and polarization state of macrophages, including their
IL1b production. Therefore, we sorted TAMs from anti-CCL2-

treated and control KEP tumors and examined the expression
of several genes that have been associated with the polarization
of TAMs.19 We found no significant changes in gene expression
of Arg1, Cd206, Decoy Il1r2 and Nos2 in TAMs upon CCL2
blockade compared to controls (Fig. 5D). Interestingly, we
observed a significant decrease in TAM-derived Il1b mRNA,
while expression of other known inducers of IL17, like Tgfb, Il6
and Il23p19 (18) in TAMs was unaffected upon CCL2 blockade
in vivo (Fig. 5E). Moreover, Il1b expression in tumor cells, lym-
phocytes and neutrophils sorted from primary KEP tumors,
was unaffected by CCL2 blockade (Fig. S5A).

Consistent with these in vivo findings, expression of Il1b in
bone marrow-derived macrophages cultured in vitro in the
presence of KEP tumor cell-conditioned medium (KEPCM)
was significantly reduced upon CCL2 blockade (Fig. S5B, C),
indicating that CCL2 induces IL1b expression in TAMs. More-
over, IL1b blockade in KEP mice did not affect systemic CCL2
levels, ruling out that IL1b acts upstream of CCL2 (Fig. S5D).

To further confirm that CCL2 activates the gd T cell – IL17
– neutrophil axis via TAM-derived IL1b, we performed in vivo
rescue experiments in which mammary tumor-bearing KEP
animals treated with anti-CCL2 or controls were reconstituted
with recombinant murine IL1b (rIL1b) (Fig. 5F). Intracellular
flow cytometry analyses revealed that reconstitution with rIL1b
reversed the anti-CCL2-induced reduction of IL17-producing
gd T cells (Fig. 5G) and restored neutrophil accumulation in
KEP lungs (Fig. 5H). Together these and our previous results
demonstrate that tumor-derived CCL2 locally induces IL1b
expression by TAMs, which can activate a systemic cascade of
inflammatory events that was previously found to facilitate
breast cancer metastasis (Fig. 6).5

Correlation between CCL2 and IL1B gene expression levels
in human breast cancer

To determine whether there is support in human breast cancer
patients for the causal link between CCL2 and IL1b as observed
in the conditional KEP mouse model, we took advantage of gene
expression data from tumors obtained from treatment na€ıve
breast cancer patients. CCL2 and IL1B expression are highly
enriched in basal-like tumors when compared to other subtypes
of human breast cancer (Fig. 7A, B). Gene expression analysis of
2 independent data sets (METABRIC20 and 295 NKI21) con-
firmed these results (Fig. S6A-F). Consistent with our data
obtained in the KEP model, the expression of CCL2 and IL1B
transcripts in treatment na€ıve human breast cancers is positively
correlated across all breast cancer subtypes (Fig. 7C).

Based on gene expression of CD45, we found that basal-like
tumors, together with Her2C tumors, show the highest leuko-
cyte influx across breast cancer subtypes (Fig. S6G). Interest-
ingly, CCL2 expression, and IL1B to a lesser extent, correlated
with macrophage marker CD68 (Fig. 7D, E), suggesting that
macrophage-rich tumors express higher levels of CCL2 and
IL1b. To assess whether CCL2 and IL1b expression were corre-
lated with increased proportions of macrophages in human
breast cancer, we performed Cibersort analysis – a computa-
tional analysis of the intratumoral immune composition based
on gene expression data.22,23 In line with the previous results,
this analysis revealed that across all subtypes, basal-like breast

e1334744-6 K. KERSTEN ET AL.



tumors contain the highest proportions of macrophages
(Fig. 7F and Fig. S6H). Together these results support the link
between CCL2 and IL1b in human breast tumors.

Discussion

The role of CCL2 in breast cancer metastasis is controversial.
Several studies report a pro-metastatic role through the

recruitment and/or polarization of inflammatory monocytes
and macrophages.10-12,24,25 However, other studies demonstrate
anti-metastatic activity of CCL2, by activating neutrophils to
kill disseminated tumor cells in an H2O2-mediated manner.26

Our data obtained in the genetically engineered KEP model
and transplantation-based spontaneous breast cancer metasta-
sis model show that CCL2 blockade can have both pro- and
anti-metastatic effects, depending on the timing of therapeutic

Figure 5. CCL2-induced IL1b expression by CCR2C tumor-associated macrophages activates the gd T cell – IL17 – neutrophil axis. (A) Representative histograms of CCR2
expression (red) compared to FMO (gray) on intratumoral CD11bCF4/80CCD206C TAMs, CD11bCF4/80—Ly6G—Ly6Chi monocytes and CD11bCF4/80—Ly6GCLy6Clo neu-
trophils. (B) Quantification of delta median fluorescence intensity (MFI) (MFI stained sample – MFI of FMO) of CCR2 on different populations of tumor-infiltrating myeloid
cells. (C) Quantification of tumor-infiltrating immune populations in tumors (»225 mm2) of genetically engineered KEP mice treated with anti-CCL2 (n D 7) or controls (n
D 3). (D, E) TAMs were sorted from orthotopically transplanted KEP mammary tumors (»225 mm2) treated with anti-CCL2 (n D 5) or controls (n D 4). Transcripts of Arg1,
Cd206, decoy Il1r2 and Nos2 (D) and Il1b, Tgfb, Il6 and Il23p19 (E) were determined by quantitative RT-PCR and normalized to b-actin. (F) Experimental set up of rescue of
anti-CCL2 induced phenotypes with recombinant IL1b. Genetically engineered KEP mice were treated with anti-CCL2 or PBS and for 3 consecutive days with recombinant
IL1b (rIL1b). 24 hours after the last injection with rIL1b and anti-CCL2 animals were sacrificed and lungs were collected for flow cytometric analysis. The proportion of
IL17C cells gated on total gd T cells (G) and CD11bCLy6GCLy6CC neutrophils gated on CD45C cells (H) in lungs of KEP mice treated with control (n D 9), anti-CCL2 (n D
8), anti-CCL2C rIL1b (n D 7) and rIL1b (n D 6). (�p < 0.05, ��p < 0.01, ���p < 0.001, Mann-Whitney U test). All data are mean § s.e.m.
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Figure 6. Mammary tumor-derived CCL2 promotes systemic inflammation via TAM-derived IL1b. Mammary tumors elicit a systemic inflammatory cascade via the expres-
sion of CCL2. This cascade is initiated at the primary tumor where CCL2 induces the expression of IL1b in TAMs leading to the systemic induction of IL17 production by
gd T cells, G-CSF-dependent expansion and polarization of neutrophils (indicated by color shades) and suppression of CD8C T cell activity. By inducing this cascade of
events tumors elicit an immunosuppressive state in distant organs which was described previously to facilitate the formation of metastatic disease.5

Figure 7. Gene expression of CCL2 and IL1B is positively correlated in human breast cancer. (A-B) Gene expression of CCL2 (A) and IL1B (B) in different subtypes of treat-
ment na€ıve human breast cancer (Basal n D 106; Her2 n D 52; LumA n D 107; LumB n D 86 patients). Statistical significance was determined by Mann-Whitney U test.
(C) CCL2 and IL1B gene expression are highly correlated across all subtypes of human breast cancer. CCL2 (D) and IL1B (E) gene expression in human breast cancer
correlates with macrophage marker CD68. (F) Estimated fraction of macrophages in different breast cancer subtypes as determined by Cibersort. 22,23 Also see Fig. S5G.
(�p < 0.05, ��p < 0.01, ���p < 0.001, Mann-Whitney U test). All data are mean § s.e.m.
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intervention. As reported by others,14 we show that neo-adju-
vant CCL2 inhibition followed by cessation of the therapy
increases the formation of pulmonary metastasis, whereas con-
tinued CCL2 blockade in an adjuvant treatment setting inhibits
metastasis formation, indicating the challenge of targeting
CCL2 during metastasis.15,27,28 Since targeting the CCL2/CCR2
signaling pathway is of clinical interest, it is crucial to better
understand the molecular mechanisms of CCL2 action in dif-
ferent mouse models of human cancer.

We here report a novel mechanism by which CCL2 func-
tions during breast cancer progression, namely via the induc-
tion of a systemic neutrophilic inflammatory cascade which we
have demonstrated before to facilitate metastasis.5 We identi-
fied CCL2 as a driver of this systemic inflammatory cascade by
inducing IL1b expression in TAMs. Upon CCL2 blockade, the
systemic proportions of IL17C gd T cells and neutrophils were
reduced, resulting in increased activity of CD8C T cells. In line
with our findings, therapeutic targeting of macrophages by
interfering with CCL2/CCR2 signaling in experimental models
has resulted in increased anti-tumor T cell responses.29-31

While some studies report direct T cell suppression by macro-
phages,30,31 the role of neutrophils in CCL2-mediated immuno-
suppression remains elusive. Here, we report that CCL2
contributes to tumor-associated immunosuppression by pro-
moting mammary tumor-induced systemic neutrophil expan-
sion and polarization. In line with our finding, it was reported
that CCL2 promotes the accumulation and immunosuppressive
properties of polymorphonuclear-myeloid-derived suppressor
cells (PMN-MDSCs), which share many features with neutro-
phils, in a mouse model for colorectal carcinogenesis.32

Together, our findings and previous studies provide evidence
that targeting CCL2/CCR2 signaling could relieve systemic
immunosuppression and unleash anti-tumor immune
responses.

Our experiments shed light on the multi-step mechanism
underlying the interaction between CCL2 and immunosuppres-
sive neutrophils, by showing that CCL2 promotes IL1b expres-
sion in TAMs, which triggers a cascade of downstream
systemic events involving IL17 expression by gd T cells leading
to G-CSF-induced expansion of pro-metastatic neutrophils.
Interestingly, the connection between CCL2/CCR2 signaling
and IL1b is also important in non-tumor settings. In a model
for microbiota-induced intestinal inflammation, CCR2 signal-
ing mediates NLRP3 inflammasome-dependent release of IL1b
from monocytes triggering inflammation upon epithelial
injury.33 Whether CCL2-induced IL1b production in TAMs in
the KEP model requires the NLRP3 inflammasome remains to
be investigated.

Also, CCL2 has been described to activate and mobilize gd T
cells in various inflammatory conditions including allergy and
sepsis.34,35 Furthermore, inflammation-induced CCL2 expres-
sion has been shown to recruit IL17-producing CCR2C gd T
cells that are activated by IL1b and IL23 in a mouse model for
rheumatoid arthritis.36 These striking similarities between non-
tumor and tumor-induced inflammation hint toward a more
general causal link between CCL2, IL1b and gd T cell signaling
in various inflammatory conditions. Intriguingly, anti-tumor
gd T cells have been shown to infiltrate tumors in a CCL2-
mediated manner in the B16 melanoma inoculation model.37

In this model, CCL2 directly affected the migration and recruit-
ment of gd T cells, and the role of IL1b was not assessed.
Whether and how these opposite functions of CCL2 on tumor
biology are dictated by the genetic make-up of tumors, tumor
type, tumor stage and/or other cancer cell-intrinsic or -extrinsic
properties remains to be established.

Several independent clinical studies show that expression of
CCL2, IL17, the intratumoral presence of macrophages, gd T
cells, and systemic neutrophil accumulation each correlate with
poor prognosis in breast cancer patients.8,38-41 Moreover,
expression of IL1b is elevated in human invasive breast cancers
compared to healthy tissue.42 In line with these reports, we
show in human treatment na€ıve breast cancers that CCL2 and
IL1B gene expression are highly correlated and are most pro-
nounced in macrophage-rich tumors. The findings in our pre-
vious 5 and current studies suggest that these inflammatory
cells and mediators are causally linked, and that interruption of
this systemic inflammatory cascade can be a potential thera-
peutic target to relieve tumor-induced systemic immunosup-
pression. A recent phase 1b clinical trial in patients with
pancreatic cancer revealed that therapeutic targeting of CCL2/
CCR2 signaling in combination with a chemotherapy regimen
has clinical activity and resulted in reduced immunosuppres-
sion and an increase in the number of tumor-infiltrating lym-
phocytes.43 Together these results advocate for the exploration
of CCL2/CCR2 targeting drugs for the treatment of metasta-
sized breast cancer.

Materials and methods

Patient material and Cibersort

Biopsies of primary breast tumors were collected before treat-
ment from women who received neo-adjuvant chemotherapy
at the Netherlands Cancer Institute between 2000 and 2013 as
part of ongoing clinical trials, or were treated off protocol
according to the standard arms of one of these studies
(NCT00448266, NCT01057069). The studies have been
approved by the ethical committee and informed consent was
obtained from all patients. Biopsies were taken using a core
needle and were snap-frozen in liquid nitrogen. RNA was iso-
lated from samples with a tumor percentage > 50% and ana-
lyzed on a microarray or using RNAseq (details are available in
Supplementary Materials and methods). The microarray data
were generated and analyzed as described previously,44 and
made available through the GEO database, accession
GSE34138. To determine the relative abundance of immune
cells in our samples, we analyzed the microarray data using
CIBERSORT (22 and https://cibersort.stanford.edu/).

Animal studies

The generation of K14cre;Cdh1F/F;Trp53F/F (KEP) mice has
been described in detail.45 KEP mice were backcrossed to the
FVB/N background. Mammary tumor formation was moni-
tored twice weekly by palpation and caliper measurements. For
transplantation studies female FBV/N mice (10-12 weeks) were
purchased from Charles River Laboratories. Orthotopic trans-
plantation of KEP tumors was performed as described earlier.13
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Female Tcrd—/— mice on the FVB/N background were kindly
provided by A. Hayday.46 Animals were kept in open cages and
food and water were provided ad libitum. Animal experimental
procedures were approved by the Animal Ethics Committee of
the Netherlands Cancer Institute and performed in accordance
with national and institutional guidelines for Animal Care and
Use.

In vivo CCL2 and IL1b neutralization

Mammary tumor-bearing KEP animals were injected intraperi-
toneally with chimeric rat/mouse anti-mouse CCL2 (Janssen
Pharmaceuticals, C1142) twice weekly dosed at 10 mg/kg or
50 mg anti-ILb (BioXCell, BE0246) twice weekly starting from a
tumor size of 25 mm2 and continued until animals were sacri-
ficed once their primary tumor reached 225 mm2. Control mice
received equal amounts of isotype-matched control antibodies
(Janssen Pharmaceuticals, C1322) or PBS. For metastasis stud-
ies, FVB/N animals bearing orthotopically transplanted KEP
tumors were treated in the neo-adjuvant setting with anti-CCL2
starting from a tumor size of 6 mm2 until the primary tumor
was surgically removed (»225 mm2). For adjuvant CCL2 block-
ade, treatment with anti-CCL2 was initiated 3 d after surgical
removal of the primary tumor and continued until animals had
to be sacrificed due to clinical signs of metastatic disease. Ani-
mals were randomized before initiating treatment.

Surface and intracellular staining for flow cytometry

Tissues were collected in ice-cold PBS. Blood samples were col-
lected in tubes containing heparin (Leo Pharma) and treated
with NH4 lysis buffer. Tumors and lungs were mechanically
chopped using a McIlwain Tissue Chopper (Mickle Laboratory
Engineering) and digested for 1 hour at 37�C in a digestion
mix of 3 mg/ml collagenase type A (Roche, 11088793001) and
25 mg/ml DNAse (Invitrogen, 18068–015) or 30 min at 37�C in
100 mg/ml Liberase (Roche, 5401127001) respectively, in
serum-free DMEM (Invitrogen). Reactions were terminated by
addition of DMEM containing 8% FCS. Cell suspensions were
dispersed through a 70 mm cell strainer (BD Falcon, 352350).
All single cell suspensions were treated with NH4 lysis buffer to
remove red blood cells.

For ex vivo cytokine stimulation, single cells were collected
at 1500 rpm for 5 min in a round bottom 96-wells tissue culture
plate (Thermo Scientific) in IMDM containing 8% FCS,
100 IU/ml penicillin, 100 mg/ml streptomycin (Invitrogen) and
0.5% b-mercaptoethanol. Cells were stimulated with phorbol
12-myristate 13-acetate (PMA; 50 ng/ml) and ionomycin (1
mM) in the presence of Golgi-PlugTM (BD Biosciences, 555029)
for 3 h at 37�C.

For flow cytometric staining, either stimulated or unstimu-
lated single cells were collected at 1500 rpm for 5 min and
resuspended in PBS containing 1% BSA (Sigma-Aldrich). Sin-
gle cell suspensions were plated in round bottom 96-wells
plates (Thermo Scientific) and incubated for 30 min in the dark
at 4�C with different combinations of fluorescently labeled
monoclonal antibodies. For intracellular staining cells were
washed twice with PBS containing 1% BSA and fixed and per-
meabilized using the Cytofix/CytopermTM kit (BD Biosciences,

554714) according to manufacturer’s instructions. Cells were
subsequently incubated for 30 min in the dark at 4�C with anti-
bodies against IFNg and IL17A. Fixable Viability Dye APC
eFluor� 780 (eBioscience, 65–0865) or 7AAD viability staining
solution (eBioscience, 00–6993) was added to exclude dead
cells. Flow cytometric analysis was performed on a BD LSRII
using Diva Software (BD Biosciences). Data analyses were per-
formed using FlowJo Software version 10.0 (Tree Star Inc.).

The following antibody panels were used:
Myeloid panel – CD45-eFluor605NC (1:50; clone 30-F11),
CD11b-eFluor650NC (1:400; clone M1/70), Ly6G-Alexa-
Fluor700 (1:400; clone 1A8; BD Pharmingen), Ly6C-eFluor450
(1:400; clone HK1.4), F4/80-APC-eFluor780 (1:200; clone
BM8), VEGFR1-APC (1:50; clone 141522; R&D Systems),
cKIT-PE-Cy7 (1:400; clone 2B8), CCR2-PE (1:50; clone
475301; R&D Systems), CXCR4-PerCP-eFluor 710 (1:400;
clone 2B11), CD49d-FITC (1:400; clone R1–2) or Gr1-FITC
(1:400; clone RB6–8C5), 7AAD.

Lymphoid panel I – CD45-eFluor605NC (1:50; clone 30-
F11), CD11b-eFluor650NC (1:400; clone M1/70), CD3-PE-Cy7
(1:200; clone 145–2C11), CD4-APC-eFluor780 (1:200; clone
GK1.5), CD8-PerCP-eFluor710 (1:400; clone 53–6.7), gdTCR-
FITC (1:400; clone GL3; BD Biosciences), CD49b-APC (1:400;
clone DX5), IL17A-PE (1:200; clone eBio17B7), IFNg-
eFluor450 (1:200; clone XMG1.2), 7AAD.

Lymphoid panel II – CD45-eFluor605NC (1:50; clone 30-
F11), CD11b-APC-eFluor780 (1:200; clone M1/70), CD3-PE-
Cy7 (1:200; clone 145–2C11), CD4-APC-eFluor780 (1:200;
clone GK1.5), CD8-PerCP-eFluor710 (1:400; clone 53–6.7),
gdTCR-PE (1:400; clone GL3), CD49b-APC (1:400; clone
DX5), CD62L-AlexaFluor700 (1:400; clone MEL-14), CD44-
FITC (1:400; clone IM7; BD Pharmingen), IFNg-eFluor450
(1:200; clone XMG1.2), CD19-APC-eFluor780 (1:200; clone
eBio1D3), Fixable Viability Dye eFluor� 780.

Phenotyping gd T cells panel I – CD27-PE-Cy7 (1:200; clone
LG.7F9), gdTCR-FITC (1:400; clone GL3; BD Biosciences),
CD45-eFluor605NC (1:50; clone 30-F11), CD3-eFluor450
(1:200; clone 145–2C11), CCR2-PE (1:50; clone 475301; R&D
Systems), CD8-PerCP-eFluor710 (1:400; clone 53–6.7), CD4-
APC-eFluor780 (1:200; clone GK1.5), CD19-APC-eFluor780
(1:200; clone eBio1D3), CD11b-APC-eFluor780 (1:200; clone
M1/70), Fixable Viability Dye eFluor� 780.

Phenotyping gd T cells panel II – CD27-PE-Cy7 (1:200;
clone LG.7F9), gdTCR-FITC (1:400; clone GL3; BD Bioscien-
ces), CD45-eFluor605NC (1:50; clone 30-F11), CD3-eFluor450
(1:200; clone 145–2C11), CCR2-PE (1:50; clone 475301; R&D
Systems), IL17A-APC (1:50, clone TC11–18H10; BD Pharmin-
gen), IFNg-eFluor450 (1:200; clone XMG1.2). Fixable Viability
Dye eFluor� 780.

All antibodies were obtained from eBiosciences, unless indi-
cated otherwise.

In vivo rescue with recombinant proteins

For CCL2 rescue experiments, female wild-type or Tcrd—/—

mice (10-12 weeks of age) were injected intravenously (i.v.)
with 1 mg/day recombinant murine CCL2 (Peprotech, 250-10)
in 100 ml sterile PBS or vehicle for 5 consecutive days. On the
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last day animals were sacrificed 1 hr after rCCL2 or vehicle
administration and blood and lungs were collected and proc-
essed for flow cytometric analysis. For the IL17C gd T cell read
out, lung and blood cells were pooled to gain sufficient amounts
of cells. For neutrophil and monocytes read-out, only blood
was used.

For IL1b rescue experiments, mammary tumor-bearing KEP
animals were treated twice weekly with anti-CCL2 (C1142 Jans-
sen Pharmaceuticals) by intraperitoneal injection dosed at
10 mg/kg starting from a tumor size of 25 mm2 until animals
were sacrificed. When tumors reached a size of »130 mm2 ani-
mals were injected intraperitoneally (i.p.) with 0,5 mg/day
recombinant murine IL1b (Peprotech, 211-11B) for 3 consecu-
tive days. Animals were sacrificed 24 hrs after the last injection
and organs were collected and processed for flow cytometry.

Cytokine analysis

Multiplex quantification of inflammatory cytokines and che-
mokines was performed using the premixed 32-plex Mouse
Immunology Multiplex assay (Milliplex-Map Millipore,
MCYTMAG-70K-PX32). Assays and tissue preparations were
performed according to manufacturer’s recommendations.
100 mg of total protein from lysed tissues was used for measure-
ments. Fluorescence was measured on a Luminex FlexMap3D
System using xPonent 4.0 software (Luminex Corporation). IL-
17A and G-CSF levels in serum or culture supernatant were
measured by BD Cytometric Bead Array (CBA) Flex Set (BD
Biosciences, mouse IL-17A, 560283; mouse G-CSF, 560152).
Assays were performed according to manufacturer’s recom-
mendations. Flow cytometric analysis was performed on a
Cyan flow cytometer using Summit Software (Beckman Coulter
Inc.). Data analyses were performed using FlowJo Software ver-
sion 10.0 (Tree Star Inc.). CCL2 serum levels were measured by
ELISA (R&D Systems, DY479) according to manufacturer’s
recommendations.

RNA in situ hybridization

Tissues were fixed in 10% neutral buffered formalin for 24 hrs,
embedded in paraffin (FFPE), and sectioned at 5 mm. Localiza-
tion of Ccl2 mRNA in KEP mammary tumors was examined by
performing RNA in situ hybridization on fresh FFPE slides
using RNAscope 2.0 FFPE assay (Advanced Cell Diagnostics).
As controls, probes against DapB (negative control) and PPIB
(positive control) were used. Assay was performed as described
in (47). Stained slides were digitally processed using the Aperio
ScanScope (Aperio, Vista) and captured using ImageScope soft-
ware version 11.0.2 (Aperio, Vista).

Fluorescence activated cell sorting

Single cell suspensions from KEP mammary tumors were pre-
pared as described above. CD11b-APC (clone M1/70; eBio-
science) myeloid cells were isolated by anti-APC beads over a
magnetic column (Milteny). The CD11bC fraction was stained
with F4/80-PE (clone BM8; eBioscience), Ly6C-eFluor450
(clone HK1.4; eBioscience), CD11c-PE-Cy7 (clone HL3; BD
Bioscience) and Ly6G-FITC (clone 1A8; BD Pharmingen). The

CD11b— fraction was stained with CD45-PerCp-Cy5.5 (clone
30-F11; eBioscience), CD31-FITC (clone 390; eBioscience),
PDGFRb-PE (clone APB5; eBioscience) and sorted using a BD
FACS Aria II, and collected in Trizol for further analysis.

The following populations were identified based on the
expression of the following surface markers: tumor cells
(CD31—CD45—CD11b—), lymphocytes (CD45CCD11b—),
fibroblasts (PDGFRbCCD31—CD45—CD11b—), endothelial
cells (CD31CCD45—CD11b—), macrophages (CD11bCF4/80C),
dendritic cells (DC) (CD11bCF4/80—CD11cC), neutrophils
(CD11bCF4/80—Ly6GCLy6Clo), and monocytes (CD11bCF4/
80—Ly6G—Ly6Chi). All cells were collected in Trizol for further
analysis.

For gd T cell sorts, single cells from KEP spleen and lymph
nodes were pooled, collected at 1500 rpm for 5 min and stained
for 30 min in the dark at 4�C with CD3-FITC (eBioscience;
clone 145-2C11) in PBS containing 1% BSA. After staining,
cells were collected at 1500 rpm for 5 min and suspended in
IMDM containing 2% FCS, 100 IU/mL penicillin, 100 mg/mL
streptomycin (Invitrogen) and 0.5% b-mercaptoethanol. Subse-
quently, cells were pre-sorted for CD3C T cells using a BD
FACS Aria II and collected in 100% FCS. Next, cells were col-
lected at 1500 rpm for 5 min and stained for 30 min in the dark
at 4�C with gd TCR-PE (clone GL3; eBioscience) and CD27-
PE-Cy7 (clone LG.7F9, eBioscience) in PBS containing 1%
BSA. After staining, cells were sorted for CD27C and CD27—

gd T cells and collected in 100% FCS for further use.

Ex vivo culture of gd T cells

Sorted gd T cells were cultured 1:1 with irradiated splenocytes
(40 Gy) in flat bottom 96-wells tissue culture plate (Thermo
Scientific) in IMDM containing 8% FCS, 100 IU/mL penicillin,
100 mg/mL streptomycin (Invitrogen) and 0.5% b-mercaptoe-
thanol. T cells were activated by addition of Dynabeads Mouse
T-activation CD3/CD28 beads (Thermo Scientific, 11456D).
Culture medium was supplemented with recombinant murine
IL-23 (10 ng/mL; purified by the NKI protein facility) or
50 ng/mL recombinant murine CCL2 (Peprotech, 250-10).
After 48 hours of culture, supernatant was collected and stored
in -20�C until further use.

In vitro culture of bone marrow-derived macrophages
(BMDM)

Bone marrow was obtained from femurs and tibia of female
wild-type mice and cultured for 6–8 d in RPMI containing 8%
FCS, 100 IU/mL penicillin, 100 mg/mL streptomycin (Invitro-
gen) supplemented with 20 ng/ml murine CSF-1 (Peprotech,
315-02). For experiments, BMDM were primed overnight in
medium containing 100 ng/ml LPS. The next day, BMDM were
washed and cultured in control RPMI or RPMI 1:1 supple-
mented with conditioned medium from KEP tumor cell lines
(KEPCM) with or without anti-CCL2 (5 mg/ml). KEP tumor
cell line-conditioned media was generated by culturing KEP
tumor cell lines in serum-free RPMI for 48 hours. Supernatant
was centrifuged to exclude cellular debris before use in BMDM
experiments. After 24 hours, BMDM were collected and RNA
was extracted using RNeasy columns (Qiagen, 74104). Il1b
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expression levels were determined by RT-PCR. Fold change
was calculated using the formula 2¡(DCt — X[DCtWT]).

Real-time polymerase chain reaction (RT-PCR)

RNA was extracted from FACS-sorted immune cell popula-
tions using Trizol-chloroform method. RNA was cleaned with
DNase (Invitrogen) and the yield was measured by using Nano-
drop. cDNA first-strand synthesis was performed using Cloned
AMV First-Strand cDNA Synthesis Kit (Invitrogen, 12328)
using Oligo(dT) primers. qRT-PCR analysis was performed
using LightCycler 480 SYBR Green I Master (Roche Applied
Sciences) according to the manufacturer’s instructions. Briefly,
20 ng cDNA was dissolved in 1x LightCycler 480 SYBR Green
Master mix containing 500 nM of forward and reverse primers
(see Table S1). For quantification the delta Ct method was
used: DCt sample ¡ DCt reference gene. All transcripts were
normalized to b-actin.

Immunohistochemistry

Formalin-fixed tissues were processed by routine procedures.
Lung metastases were detected as described previously.5,13

Briefly, one lung section of each animal was used for detection
of metastatic nodules using anti-cytokeratin 8 (clone Troma1;
Developmental Studies HybridomaBank, University of Iowa)
with citrate antigen retrieval. Only mice that were sacrificed
due to respiratory distress were included in this analysis. The
number of cytokeratin 8C metastatic nodules in the lung was
blindly scored by at least 2 researchers. Stained slides were digi-
tally processed using the Aperio ScanScope (Aperio) and cap-
tured using ImageScope software version 11.0.2 (Aperio).
Brightness and contrast for representative images were adjusted
equally among groups.

Statistical analysis

Data analyses were performed using GraphPad Prism version
6.01 (GraphPad Software Inc.). Applied analyses are indicated
in the corresponding legends. No statistical methods were used
to determine sample sizes. Sample sizes were based on previous
experience with the models.5,13,48 Differences with a p<0.05
were considered statistically significant.
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