18 research outputs found

    Lower-limb amputees can reduce the energy cost of walking when assisted by an Active Pelvis Orthosis

    Get PDF
    Exoskeletons could compete with active prostheses as effective aids to reduce the increased metabolic demands faced by lower-limb amputees during locomotion. However, little evidence of their efficacy with amputees has been provided so far. In this paper, a portable hip exoskeleton has been tested with seven healthy subjects and two transfemoral amputees, with the final goal to verify whether a hip flexion-extension assistance could be effective in reducing the metabolic cost of walking. The metabolic power of the participants was estimated through indirect calorimetry during alternated repetitions of three treadmill-based walking conditions: without the exoskeleton (NoExo), with the exoskeleton in zero-torque mode (ExoTM) and with the exoskeleton providing hip flexion-extension assistance (ExoAM). The results showed that the exoskeleton reduced the net metabolic power of the two amputees in ExoAM with respect to NoExo, by 5.0% and 3.4%. With healthy subjects, a 5.5±3.1% average reduction in the metabolic power was observed during ExoAM compared to ExoTM (differences were not statistically significant), whereas ExoAM required 3.9±3.0% higher metabolic power than NoExo (differences were not statistically significant). These results provide initial evidence of the potential of exoskeletal technologies for assisting lower-limb amputees, thereby paving the way for further experimentations

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    Syndromic craniosynostosis can define new candidate genes for suture development or result from the non-specifc effects of pleiotropic genes: Rasopathies and chromatinopathies as examples

    No full text
    Craniosynostosis is a heterogeneous condition caused by the premature fusion of cranial sutures, occurring mostly as an isolated anomaly. Pathogenesis of non-syndromic forms of craniosynostosis is largely unknown. In about 15-30% of cases craniosynostosis occurs in association with other physical anomalies and it is referred to as syndromic craniosynostosis. Syndromic forms of craniosynostosis arise from mutations in genes belonging to the Fibroblast Growth Factor Receptor (FGFR) family and the interconnected molecular pathways in most cases. However it can occur in association with other gene variants and with a variety of chromosome abnormalities as well, usually in association with intellectual disability (ID) and additional physical anomalies. Evaluating the molecular properties of the genes undergoing intragenic mutations or copy number variations (CNVs) along with prevalence of craniosynostosis in different conditions and animal models if available, we made an attempt to define two distinct groups of unusual syndromic craniosynostosis, which can reflect direct effects of emerging new candidate genes with roles in suture homeostasis or a non-specific phenotypic manifestation of pleiotropic genes, respectively. RASopathies and 9p23p22.3 deletions are reviewed as examples of conditions in the first group. In particular, we found that craniosynostosis is a relatively common component manifestation of cardio-facio-cutaneous (CFC) syndrome. Chromatinopathies and neurocristopathies are presented as examples of conditions in the second group. We observed that craniosynostosis is uncommon on average in these conditions. It was randomly associated with Kabuki, Koolen-de Vries/KANSL1 haploinsufficiency and Mowat-Wilson syndromes and in KAT6B-related disorders. As an exception, trigonocephaly in Bohring-Opitz syndrome reflects specific molecular properties of the chromatin modifier ASXL1 gene. Surveillance for craniosynostosis in syndromic forms of intellectual disability, as well as ascertainment of genomic CNVs by array-CGH in apparently non-syndromic craniosynostosis is recommended, to allow for improvement of both the clinical outcome of patients and the accurate individual diagnosis

    High-throughput genetic testing in ALS: The challenging path of variant classification considering the acmg guidelines

    Get PDF
    The development of high-throughput sequencing technologies and screening of big patient cohorts with familial and sporadic amyotrophic lateral sclerosis (ALS) led to the identification of a significant number of genetic variants, which are sometimes difficult to interpret. The American College of Medical Genetics and Genomics (ACMG) provided guidelines to help molecular geneticists and pathologists to interpret variants found in laboratory testing. We assessed the application of the ACMG criteria to ALS-related variants, combining data from literature with our experience. We analyzed a cohort of 498 ALS patients using massive parallel sequencing of ALS-associated genes and identified 280 variants with a minor allele frequency < 1%. Examining all variants using the ACMG criteria, thus considering the type of variant, inheritance, familial segregation, and possible functional studies, we classified 20 variants as \u201cpathogenic\u201d. In conclusion, ALS\u2019s genetic complexity, such as oligogenic inheritance, presence of genes acting as risk factors, and reduced penetrance, needs to be considered when interpreting variants. The goal of this work is to provide helpful suggestions to geneticists and clinicians dealing with ALS

    Mutations in the 3′ untranslated region of FUS causing FUS overexpression are associated with amyotrophic lateral sclerosis

    No full text
    Mutations in the gene encoding fused-in-sarcoma (FUS) have been identified in a subset of patients with sporadic and familial amyotrophic lateral sclerosis (ALS). Variants in the 3′ untranslated region (3′UTR) of FUS have also been reported in ALS patients, but their pathogenic role has not been assessed. We sequenced the whole 3′UTR of FUS in 420 ALS patients who were negative for mutations in the currently known ALS genes and in 480 ethnically matchedcontrols.Wedetected four 3′UTRvariants (c.*48G>A, c.*59G>A, c.*108C>Tand c.*110G>A) in four sporadic and in one familial ALS patients compared with none in controls (P 5 0.02).We investigated whether these variants impaired FUS expression in primary fibroblast cultures from three patients harbouring the c.*59G>A, c.*108 C>T and c.*110G>A variants, respectively. The pattern of FUS expression was also investigated in fibroblasts from one ALS patient with FUS R521C mutation, in two ALS patients without mutations in theknownALSgenes and in four control individuals.Byimmunostaining and immunoblotting, large amounts of FUS were observed in both the cytoplasm and nuclei of mutant 3′UTR FUS fibroblasts. In FUS R521C mutant fibroblasts,weobserved a slight increase ofFUSin the cytoplasmassociated with a remarkable loss of detection in nuclei. Our findings show that mutations in 3′UTR of FUS are overrepresented in ALS patients and result into translation de-regulation of FUS. Overexpression and mislocalization of wild-type FUS likely contribute to ALS pathogenesis in these cases. © The Author 2013

    Matrin 3 variants are frequent in Italian ALS patients

    No full text
    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by loss of motor neurons in the primary motor cortex, brainstem, and spinal cord. Recently, missense variants in MATR3 were identified in familial and sporadic ALS patients, but very few additional ALS patients have been reported so far. The p.S85C MATR3 variant was previously associated to a different phenotype, namely a distal myopathy associated with dysphagia and dysphonia. Here, we assessed the contribution of MATR3 variants in a cohort of 322 Italian ALS patients. We identified 5 different missense MATR3 variants (p.Q66K, p.G153C, p.E664A, p.S707L, and p.N787S) in 6 patients (1.9%). None of our patients showed signs of myopathy at electrophysiological examination. Muscle biopsy, performed in 2 patients, showed neurogenic changes and normal nuclear staining with anti-matrin 3 antibody. Our results confirm that MATR3 variants are associated with ALS and suggest that they are more frequent in Italian ALS patients. Further studies are needed to elucidate the pathogenic significance of identified variants in sporadic and familial ALS

    Analysis of STMN2 CA repeats in italian ALS patients shows no association

    No full text
    Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease caused by a complex interaction of genetic and environmental factors. Recently, a polymorphic intronic CA repeat in STMN2 gene has been proposed as risk factor for ALS. The presence of long/long CA genotype, especially if one allele had 24 CA, was reported to be significantly associated with the disease in a cohort of sporadic ALS patients. We tested an Italian cohort of 366 ALS patients and 353 healthy controls and we found no association between CA length and ALS risk

    Generation of an induced pluripotent stem cell line (UCSCi001-A) from a patient with early-onset amyotrophic lateral sclerosis carrying a FUS variant

    No full text
    Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease affecting upper and lower motor neurons. We generated patient-derived-induced Pluripotent Stem Cells (iPSCs), from an ALS patient affected by an early-onset and aggressive form of the disease, carrying a missense pathogenic variant in FUS gene. We reprogrammed somatic cells using an established Sendai virus protocol and we obtained clones of iPSC. We confirmed their stemness and further generated embryoid bodies, showing their potential of differentiating in all three germ layers. This iPSC line, carrying a pathogenic FUS variant, is a valuable tool to deeply investigate pathogenic mechanisms leading to ALS
    corecore