75 research outputs found

    Grade of Ischemia to Assess No Reflow After Reperfusion

    Get PDF

    Effect of Alirocumab on Lipoprotein(a) and Cardiovascular Risk After Acute Coronary Syndrome

    Get PDF
    Background: Lipoprotein(a) concentration is associated with cardiovascular events. Alirocumab, a proprotein convertase subtilisin/kexin type 9 inhibitor, lowers lipoprotein(a) and low-density lipoprotein cholesterol (LDL-C). Objectives: A pre-specified analysis of the placebo-controlled ODYSSEY Outcomes trial in patients with recent acute coronary syndrome (ACS) determined whether alirocumab-induced changes in lipoprotein(a) and LDL-C independently predicted major adverse cardiovascular events (MACE). Methods: One to 12 months after ACS, 18,924 patients on high-intensity statin therapy were randomized to alirocumab or placebo and followed for 2.8 years (median). Lipoprotein(a) was measured at randomization and 4 and 12 months thereafter. The primary MACE outcome was coronary heart disease death, nonfatal myocardial infarction, ischemic stroke, or hospitalization for unstable angina. Results: Baseline lipoprotein(a) levels (median: 21.2 mg/dl; interquartile range [IQR]: 6.7 to 59.6 mg/dl) and LDL-C [corrected for cholesterol content in lipoprotein(a)] predicted MACE. Alirocumab reduced lipoprotein(a) by 5.0 mg/dl (IQR: 0 to 13.5 mg/dl), corrected LDL-C by 51.1 mg/dl (IQR: 33.7 to 67.2 mg/dl), and reduced the risk of MACE (hazard ratio [HR]: 0.85; 95% confidence interval [CI]: 0.78 to 0.93). Alirocumab-induced reductions of lipoprotein(a) and corrected LDL-C independently predicted lower risk of MACE, after adjustment for baseline concentrations of both lipoproteins and demographic and clinical characteristics. A 1-mg/dl reduction in lipoprotein(a) with alirocumab was associated with a HR of 0.994 (95% CI: 0.990 to 0.999; p = 0.0081). Conclusions: Baseline lipoprotein(a) and corrected LDL-C levels and their reductions by alirocumab predicted the risk of MACE after recent ACS. Lipoprotein(a) lowering by alirocumab is an independent contributor to MACE reduction, which suggests that lipoprotein(a) should be an independent treatment target after ACS. (ODYSSEY Outcomes: Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab; NCT01663402)

    Routine Laboratory Results and Thirty Day and One-Year Mortality Risk Following Hospitalization with Acute Decompensated Heart Failure

    Get PDF
    INTRODUCTION: Several blood tests are performed uniformly in patients hospitalized with acute decompensated heart failure and are predictive of the outcomes: complete blood count, electrolytes, renal function, glucose, albumin and uric acid. We sought to evaluate the relationship between routine admission laboratory tests results, patient characteristics and 30-day and one-year mortality of patients admitted for decompensated heart failure and to construct a simple mortality prediction tool. METHODS: A retrospective population based study. Data from seven tertiary hospitals on all admissions with a principal diagnosis of heart failure during the years 2002-2005 throughout Israel were captured. RESULTS: 8,246 patients were included in the study cohort. Thirty day mortality rate was 8.5% (701 patients) and one-year mortality rate was 28.7% (2,365 patients). Addition of five routine laboratory tests results (albumin, sodium, blood urea, uric acid and WBC) to a set of clinical and demographic characteristics improved c-statistics from 0.76 to 0.81 for 30-days and from 0.72 to 0.76 for one-year mortality prediction (both p-values <0.0001). Three dichotomized abnormal laboratory results with highest odds ratio for one-year mortality (hypoalbuminaemia, hyponatremia and elevated blood urea) were used to construct a simple prediction score, capable of discriminating from 1.1% to 21.4% in 30-day and from 11.6% to 55.6% in one-year mortality rates between patients with a score of 0 (1,477 patients) vs. score of 3 (544 patients). DISCUSSION: A small set of abnormal routine laboratory results upon admission can risk-stratify and independently predict 30-day and one-year mortality in patients hospitalized with acute decompensated heart failure

    Diagnosis and risk stratification of chest pain patients in the emergency department: focus on acute coronary syndromes. A position paper of the Acute Cardiovascular Care Association.

    Full text link
    This paper provides an update on the European Society of Cardiology task force report on the management of chest pain. Its main purpose is to provide an update on the decision algorithms and diagnostic pathways to be used in the emergency department for the assessment and triage of patients with chest pain symptoms suggestive of acute coronary syndromes

    Effect of Alirocumab on Lipoprotein(a) and Cardiovascular Risk After Acute Coronary Syndrome

    Get PDF
    Lipoprotein(a) concentration is associated with cardiovascular events. Alirocumab, a proprotein convertase subtilisin/kexin type 9 inhibitor, lowers lipoprotein(a) and low-density lipoprotein cholesterol (LDL-C). A pre-specified analysis of the placebo-controlled ODYSSEY Outcomes trial in patients with recent acute coronary syndrome (ACS) determined whether alirocumab-induced changes in lipoprotein(a) and LDL-C independently predicted major adverse cardiovascular events (MACE). One to 12 months after ACS, 18,924 patients on high-intensity statin therapy were randomized to alirocumab or placebo and followed for 2.8 years (median). Lipoprotein(a) was measured at randomization and 4 and 12 months thereafter. The primary MACE outcome was coronary heart disease death, nonfatal myocardial infarction, ischemic stroke, or hospitalization for unstable angina. Baseline lipoprotein(a) levels (median: 21.2 mg/dl; interquartile range [IQR]: 6.7 to 59.6 mg/dl) and LDL-C [corrected for cholesterol content in lipoprotein(a)] predicted MACE. Alirocumab reduced lipoprotein(a) by 5.0 mg/dl (IQR: 0 to 13.5 mg/dl), corrected LDL-C by 51.1 mg/dl (IQR: 33.7 to 67.2 mg/dl), and reduced the risk of MACE (hazard ratio [HR]: 0.85; 95% confidence interval [CI]: 0.78 to 0.93). Alirocumab-induced reductions of lipoprotein(a) and corrected LDL-C independently predicted lower risk of MACE, after adjustment for baseline concentrations of both lipoproteins and demographic and clinical characteristics. A 1-mg/dl reduction in lipoprotein(a) with alirocumab was associated with a HR of 0.994 (95% CI: 0.990 to 0.999; p = 0.0081). Baseline lipoprotein(a) and corrected LDL-C levels and their reductions by alirocumab predicted the risk of MACE after recent ACS. Lipoprotein(a) lowering by alirocumab is an independent contributor to MACE reduction, which suggests that lipoprotein(a) should be an independent treatment target after ACS. (ODYSSEY Outcomes: Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab; NCT01663402

    European Society of Cardiology: Cardiovascular Disease Statistics 2019

    Get PDF
    Aims The 2019 report from the European Society of Cardiology (ESC) Atlas provides a contemporary analysis of cardiovascular disease (CVD) statistics across 56 member countries, with particular emphasis on international inequalities in disease burden and healthcare delivery together with estimates of progress towards meeting 2025 World Health Organization (WHO) non-communicable disease targets. Methods and results In this report, contemporary CVD statistics are presented for member countries of the ESC. The statistics are drawn from the ESC Atlas which is a repository of CVD data from a variety of sources including the WHO, the Institute for Health Metrics and Evaluation, and the World Bank. The Atlas also includes novel ESC sponsored data on human and capital infrastructure and cardiovascular healthcare delivery obtained by annual survey of the national societies of ESC member countries. Across ESC member countries, the prevalence of obesity (body mass index ≥30 kg/m2) and diabetes has increased two- to three-fold during the last 30 years making the WHO 2025 target to halt rises in these risk factors unlikely to be achieved. More encouraging have been variable declines in hypertension, smoking, and alcohol consumption but on current trends only the reduction in smoking from 28% to 21% during the last 20 years appears sufficient for the WHO target to be achieved. The median age-standardized prevalence of major risk factors was higher in middle-income compared with high-income ESC member countries for hypertension {23.8% [interquartile range (IQR) 22.5–23.1%] vs. 15.7% (IQR 14.5–21.1%)}, diabetes [7.7% (IQR 7.1–10.1%) vs. 5.6% (IQR 4.8–7.0%)], and among males smoking [43.8% (IQR 37.4–48.0%) vs. 26.0% (IQR 20.9–31.7%)] although among females smoking was less common in middle-income countries [8.7% (IQR 3.0–10.8) vs. 16.7% (IQR 13.9–19.7%)]. There were associated inequalities in disease burden with disability-adjusted life years per 100 000 people due to CVD over three times as high in middle-income [7160 (IQR 5655–8115)] compared with high-income [2235 (IQR 1896–3602)] countries. Cardiovascular disease mortality was also higher in middle-income countries where it accounted for a greater proportion of potential years of life lost compared with high-income countries in both females (43% vs. 28%) and males (39% vs. 28%). Despite the inequalities in disease burden across ESC member countries, survey data from the National Cardiac Societies of the ESC showed that middle-income member countries remain severely under-resourced compared with high-income countries in terms of cardiological person-power and technological infrastructure. Under-resourcing in middle-income countries is associated with a severe procedural deficit compared with high-income countries in terms of coronary intervention, device implantation and cardiac surgical procedures. Conclusion A seemingly inexorable rise in the prevalence of obesity and diabetes currently provides the greatest challenge to achieving further reductions in CVD burden across ESC member countries. Additional challenges are provided by inequalities in disease burden that now require intensification of policy initiatives in order to reduce population risk and prioritize cardiovascular healthcare delivery, particularly in the middle-income countries of the ESC where need is greatest
    corecore