68 research outputs found
Mesoscopic Transport Through Ballistic Cavities: A Random S-Matrix Theory Approach
We deduce the effects of quantum interference on the conductance of chaotic
cavities by using a statistical ansatz for the S matrix. Assuming that the
circular ensembles describe the S matrix of a chaotic cavity, we find that the
conductance fluctuation and weak-localization magnitudes are universal: they
are independent of the size and shape of the cavity if the number of incoming
modes, N, is large. The limit of small N is more relevant experimentally; here
we calculate the full distribution of the conductance and find striking
differences as N changes or a magnetic field is applied.Comment: 4 pages revtex 3.0 (2-column) plus 2 postscript figures (appended),
hub.pam.94.
How Phase-Breaking Affects Quantum Transport Through Chaotic Cavities
We investigate the effects of phase-breaking events on electronic transport
through ballistic chaotic cavities. We simulate phase-breaking by a fictitious
lead connecting the cavity to a phase-randomizing reservoir and introduce a
statistical description for the total scattering matrix, including the
additional lead. For strong phase-breaking, the average and variance of the
conductance are calculated analytically. Combining these results with those in
the absence of phase-breaking, we propose an interpolation formula, show that
it is an excellent description of random-matrix numerical calculations, and
obtain good agreement with several recent experiments.Comment: 4 pages, revtex, 3 figures: uuencoded tar-compressed postscrip
Predicting mental imagery based BCI performance from personality, cognitive profile and neurophysiological patterns
Mental-Imagery based Brain-Computer Interfaces (MI-BCIs) allow their users to send commands
to a computer using their brain-activity alone (typically measured by ElectroEncephaloGraphy—
EEG), which is processed while they perform specific mental tasks. While very
promising, MI-BCIs remain barely used outside laboratories because of the difficulty
encountered by users to control them. Indeed, although some users obtain good control
performances after training, a substantial proportion remains unable to reliably control an
MI-BCI. This huge variability in user-performance led the community to look for predictors of
MI-BCI control ability. However, these predictors were only explored for motor-imagery
based BCIs, and mostly for a single training session per subject. In this study, 18 participants
were instructed to learn to control an EEG-based MI-BCI by performing 3 MI-tasks, 2
of which were non-motor tasks, across 6 training sessions, on 6 different days. Relationships
between the participants’ BCI control performances and their personality, cognitive
profile and neurophysiological markers were explored. While no relevant relationships with
neurophysiological markers were found, strong correlations between MI-BCI performances
and mental-rotation scores (reflecting spatial abilities) were revealed. Also, a predictive
model of MI-BCI performance based on psychometric questionnaire scores was proposed.
A leave-one-subject-out cross validation process revealed the stability and reliability of this
model: it enabled to predict participants’ performance with a mean error of less than 3
points. This study determined how users’ profiles impact their MI-BCI control ability and
thus clears the way for designing novel MI-BCI training protocols, adapted to the profile of
each user
Orbital Magnetism in the Ballistic Regime: Geometrical Effects
We present a general semiclassical theory of the orbital magnetic response of
noninteracting electrons confined in two-dimensional potentials. We calculate
the magnetic susceptibility of singly-connected and the persistent currents of
multiply-connected geometries. We concentrate on the geometric effects by
studying confinement by perfect (disorder free) potentials stressing the
importance of the underlying classical dynamics. We demonstrate that in a
constrained geometry the standard Landau diamagnetic response is always
present, but is dominated by finite-size corrections of a quasi-random sign
which may be orders of magnitude larger. These corrections are very sensitive
to the nature of the classical dynamics. Systems which are integrable at zero
magnetic field exhibit larger magnetic response than those which are chaotic.
This difference arises from the large oscillations of the density of states in
integrable systems due to the existence of families of periodic orbits. The
connection between quantum and classical behavior naturally arises from the use
of semiclassical expansions. This key tool becomes particularly simple and
insightful at finite temperature, where only short classical trajectories need
to be kept in the expansion. In addition to the general theory for integrable
systems, we analyze in detail a few typical examples of experimental relevance:
circles, rings and square billiards. In the latter, extensive numerical
calculations are used as a check for the success of the semiclassical analysis.
We study the weak-field regime where classical trajectories remain essentially
unaffected, the intermediate field regime where we identify new oscillations
characteristic for ballistic mesoscopic structures, and the high-field regime
where the typical de Haas-van Alphen oscillations exhibit finite-size
corrections. We address the comparison with experimental data obtained in
high-mobility semiconductor microstructures discussing the differences between
individual and ensemble measurements, and the applicability of the present
model.Comment: 88 pages, 15 Postscript figures, 3 further figures upon request, to
appear in Physics Reports 199
Recommended from our members
The spectrum of BRCA1 and BRCA2 pathogenic sequence variants in Middle Eastern, North African, and South European countries.
BRCA1 BRCA2 mutational spectrum in the Middle East, North Africa, and Southern Europe is not well characterized. The unique history and cultural practices characterizing these regions, often involving consanguinity and inbreeding, plausibly led to the accumulation of population-specific founder pathogenic sequence variants (PSVs). To determine recurring BRCA PSVs in these locales, a search in PUBMED, EMBASE, BIC, and CIMBA was carried out combined with outreach to researchers from the relevant countries for unpublished data. We identified 232 PSVs in BRCA1 and 239 in BRCA2 in 25 of 33 countries surveyed. Common PSVs that were detected in four or more countries were c.5266dup (p.Gln1756Profs), c.181T>G (p.Cys61Gly), c.68_69del (p.Glu23Valfs), c.5030_5033del (p.Thr1677Ilefs), c.4327C>T (p.Arg1443Ter), c.5251C>T (p.Arg1751Ter), c.1016dup (p.Val340Glyfs), c.3700_3704del (p.Val1234Glnfs), c.4065_4068del (p.Asn1355Lysfs), c.1504_1508del (p.Leu502Alafs), c.843_846del (p.Ser282Tyrfs), c.798_799del (p.Ser267Lysfs), and c.3607C>T (p.Arg1203Ter) in BRCA1 and c.2808_2811del (p.Ala938Profs), c.5722_5723del (p.Leu1908Argfs), c.9097dup (p.Thr3033Asnfs), c.1310_1313del (p. p.Lys437Ilefs), and c.5946del (p.Ser1982Argfs) for BRCA2. Notably, some mutations (e.g., p.Asn257Lysfs (c.771_775del)) were observed in unrelated populations. Thus, seemingly genotyping recurring BRCA PSVs in specific populations may provide first pass BRCA genotyping platform.[CIMBA: The CIMBA data management and data analysis were supported by Cancer Research – UK grants C12292/A20861, C12292/A11174. iCOGS: the European Community's Seventh Framework Programme under grant agreement n° 223175 (HEALTH-F2-2009-223175) (COGS), Cancer Research UK (C1287/A10118, C1287/A 10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692, C8197/A16565), the National Institutes of Health (CA128978) and Post-Cancer GWAS initiative (1U19 CA148537, 1U19 CA148065 and 1U19 CA148112 - the GAME-ON initiative), the Department of Defence (W81XWH-10-1-0341), the Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer (CRN-87521), and the Ministry of Economic Development, Innovation and Export Trade (PSR-SIIRI-701), Komen Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer Research Fund. The work of Barbara Pasini has been supported by the program "Dipartimenti di Eccellenza 2018 – 2022". Project n°D15D18000410001. This work was partially funded by the Associazione Italiana Ricerca Cancro (AIRC)"; IG2015 no.16732) to P. Peterlongo. Funds from Italian citizens who allocated the 5x1000 share of their tax payment in support of the Fondazione IRCCS Istituto Nazionale Tumori, according to Italian laws (INT-Institutional strategic projects ‘5x1000’) to S. Manoukian. DEMOKRITOS: European Union (European Social Fund – ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program of the General Secretariat for Research & Technology: SYN11_10_19 NBCA. kConFab: The National Breast Cancer Foundation, and previously by the National Health and Medical Research Council (NHMRC), the Queensland Cancer Fund, the Cancer Councils of New South Wales, Victoria, Tasmania and South Australia, and the Cancer Foundation of Western Australia. MAYO: NIH grants CA116167, CA192393 and CA176785, an NCI Specialized Program of Research Excellence (SPORE) in Breast Cancer (CA116201) and a grant from the Breast Cancer Research Foundation. UCHICAGO: NCI Specialized Program of Research Excellence (SPORE) in Breast Cancer (CA125183), R01 CA142996, 1U01CA161032 and by the Ralph and Marion Falk Medical Research Trust, the Entertainment Industry Fund National Women's Cancer Research Alliance and the Breast Cancer research Foundation. OIO is an ACS Clinical Research Professor. UCLA: Jonsson Comprehensive Cancer Center Foundation; Breast Cancer Research Foundation
Neurophysiological Defects and Neuronal Gene Deregulation in Drosophila mir-124 Mutants
miR-124 is conserved in sequence and neuronal expression across the animal kingdom and is predicted to have hundreds of mRNA targets. Diverse defects in neural development and function were reported from miR-124 antisense studies in vertebrates, but a nematode knockout of mir-124 surprisingly lacked detectable phenotypes. To provide genetic insight from Drosophila, we deleted its single mir-124 locus and found that it is dispensable for gross aspects of neural specification and differentiation. On the other hand, we detected a variety of mutant phenotypes that were rescuable by a mir-124 genomic transgene, including short lifespan, increased dendrite variation, impaired larval locomotion, and aberrant synaptic release at the NMJ. These phenotypes reflect extensive requirements of miR-124 even under optimal culture conditions. Comparison of the transcriptomes of cells from wild-type and mir-124 mutant animals, purified on the basis of mir-124 promoter activity, revealed broad upregulation of direct miR-124 targets. However, in contrast to the proposed mutual exclusion model for miR-124 function, its functional targets were relatively highly expressed in miR-124–expressing cells and were not enriched in genes annotated with epidermal expression. A notable aspect of the direct miR-124 network was coordinate targeting of five positive components in the retrograde BMP signaling pathway, whose activation in neurons increases synaptic release at the NMJ, similar to mir-124 mutants. Derepression of the direct miR-124 target network also had many secondary effects, including over-activity of other post-transcriptional repressors and a net incomplete transition from a neuroblast to a neuronal gene expression signature. Altogether, these studies demonstrate complex consequences of miR-124 loss on neural gene expression and neurophysiology
Random-Matrix Theory of Quantum Transport
This is a comprehensive review of the random-matrix approach to the theory of
phase-coherent conduction in mesocopic systems. The theory is applied to a
variety of physical phenomena in quantum dots and disordered wires, including
universal conductance fluctuations, weak localization, Coulomb blockade,
sub-Poissonian shot noise, reflectionless tunneling into a superconductor, and
giant conductance oscillations in a Josephson junction.Comment: 85 pages including 52 figures, to be published in Rev.Mod.Phy
Knowledge-Based Cinematography and Its Application to Animation,
Abstract. Automated control of a virtual camera is useful for both linear animation and interactive virtual environments. We have constructed a knowledge-based system that allows users to experiment with various cinematic genres and view the results in the form of animated 3D movies. We have followed a knowledge acquisition process converting domain expert principles into declarative rules, and our system uses non-monotonic reasoning in order to support absolute rules, default rules, and arbitrary user choices. We evaluated the tool by generating various movies and showing some of the results to a group of expert viewers
Portability by Automatic Translation A Large-Scale Case Study
Automatic code translation could be a useful technique for software migration, provided it can be done in large-scale industrial applications. We have built an automatic translation system for converting IBM 370 assembly-language programs to C, in order to port the original programs to different architectures. This system, called Bogart, first analyzes the original program in terms of data flow and control flow, and translates it into an abstract internal representation. It performs various transformations on the abstract representation, and finally re-implements it in the target language. Bogart was successfully tested on several large modules with thousands of lines of assembly code each, taken from a commercial database system and application generator. The results of this research are compared with the brute-force approach first implemented by the company, showing Bogart to be superior on all counts. This research is unusual in that it took place in industry, and had a clear object..
- …