38 research outputs found

    ΠœΠžΠ”Π•Π›Π˜Π ΠžΠ’ΠΠΠ˜Π• Π Π•Π–Π˜ΠœΠžΠ’ Π ΠΠ‘ΠžΠ’Π« Π‘Π£Π”ΠžΠ’Π«Π₯ ΠŸΠžΠ’Π Π•Π‘Π˜Π’Π•Π›Π•Π™ Π­Π›Π•ΠšΠ’Π ΠžΠ­ΠΠ•Π Π“Π˜Π˜ Π‘ Π˜Π‘ΠŸΠžΠ›Π¬Π—ΠžΠ’ΠΠΠ˜Π•Πœ Π”Π˜ΠΠ“Π ΠΠœΠœ Π‘ΠžΠ‘Π’ΠžΠ―ΠΠ˜Π™

    Get PDF
    The simulation of operational modes of autonomous power system electrical loads for composition of loads and generators patterns, which can be used for load forecast algorithms verification and energy efficiency of the system estimation, is discussed. The probabilistic automata using for simulation of technological processes in the system and of loads commutations processes was revealed to be able to represent correlation between the loads. The model of the power system, consisting of the interdependent parallel automata network, the signal conditioning block and the generators management block and having the communication links with the database for simulation results processing, is proposed.Β References 8, figures 4.РассмотрСно ΠΈΠΌΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ€Π°Π±ΠΎΡ‚Ρ‹ ΠΏΠΎΡ‚Ρ€Π΅Π±ΠΈΡ‚Π΅Π»Π΅ΠΉ элСктроэнСргии Π² Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½Ρ‹Ρ… элСктроэнСргСтичСских установках с Ρ†Π΅Π»ΡŒΡŽ получСния суточных Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ установки ΠΈ Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€Π½Ρ‹Ρ… Π°Π³Ρ€Π΅Π³Π°Ρ‚ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ для Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² прогнозирования Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ ΠΈ расчСта ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ энСргоэффСктивности установки. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ использованиС вСроятностных Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΎΠ² для модСлирования процСссов, ΠΎΠ±ΡƒΡΠ»Π°Π²Π»ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ… характСристики Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² Ρ€Π°Π±ΠΎΡ‚Ρ‹ ΠΏΠΎΡ‚Ρ€Π΅Π±ΠΈΡ‚Π΅Π»Π΅ΠΉ элСктроэнСргии, ΠΈ процСссов ΠΊΠΎΠΌΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ ΠΏΠΎΡ‚Ρ€Π΅Π±ΠΈΡ‚Π΅Π»Π΅ΠΉ, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ ΡƒΡ‡Π΅ΡΡ‚ΡŒ коррСляционныС связи ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ€Π΅ΠΆΠΈΠΌΠ°ΠΌΠΈ ΠΈΡ… Ρ€Π°Π±ΠΎΡ‚Ρ‹. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½ΠΎ модСль элСктроэнСргСтичСской установки, состоящСй ΠΈΠ· сСти ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… взаимозависимых Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΎΠ², Π±Π»ΠΎΠΊΠΎΠ² Π½ΠΎΡ€ΠΌΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ сигналов ΠΈ управлСния Ρ€Π΅ΠΆΠΈΠΌΠ°ΠΌΠΈ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€Π½Ρ‹Ρ… Π°Π³Ρ€Π΅Π³Π°Ρ‚ΠΎΠ² ΠΈ ΠΈΠΌΠ΅ΡŽΡ‰Π΅ΠΉ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΠΎΠΌΠΌΡƒΠ½ΠΈΠΊΠ°Ρ†ΠΈΠΈ с систСмой управлСния Π±Π°Π·Π°ΠΌΠΈ Π΄Π°Π½Π½Ρ‹Ρ… для хранСния ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ модСлирования Π΄Π°Π½Π½Ρ‹Ρ….Β Π‘ΠΈΠ±Π». 8, рис. 4.Розглянуто Ρ–ΠΌΡ–Ρ‚Π°Ρ†Ρ–ΠΉΠ½Π΅ модСлювання Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ споТивачів Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ΅Π½Π΅Ρ€Π³Ρ–Ρ— Π² Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½ΠΈΡ… Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ΅Π½Π΅Ρ€Π³Π΅Ρ‚ΠΈΡ‡Π½ΠΈΡ… установках Π· ΠΌΠ΅Ρ‚ΠΎΡŽ отримання Π΄ΠΎΠ±ΠΎΠ²ΠΈΡ… Π³Ρ€Π°Ρ„Ρ–ΠΊΡ–Π² навантаТСння установки Ρ‚Π° Ρ€Π΅ΠΆΠΈΠΌΡ–Π² Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ Π³Π΅Π½Π΅Ρ€ΡƒΡŽΡ‡ΠΈΡ… Π°Π³Ρ€Π΅Π³Π°Ρ‚Ρ–Π², які ΠΌΠΎΠΆΡƒΡ‚ΡŒ Π±ΡƒΡ‚ΠΈ використані для Π²Π΅Ρ€Ρ–Ρ„Ρ–ΠΊΠ°Ρ†Ρ–Ρ— Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ–Π² прогнозування навантаТСння Ρ‚Π° Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ½ΠΊΡƒ ΠΏΠΎΠΊΠ°ΠΆΡ‡ΠΈΠΊΡ–Π² СнСргоСфСктивності установки. Π—Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎ використання ймовірнісних Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚Ρ–Π² для модСлювання процСсів, Ρ‰ΠΎ ΠΎΠ±ΡƒΠΌΠΎΠ²Π»ΡŽΡŽΡ‚ΡŒ характСристики Ρ€Π΅ΠΆΠΈΠΌΡ–Π² Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ споТивачів, Ρ‚Π° процСсів ΠΊΠΎΠΌΡƒΡ‚Π°Ρ†Ρ–Ρ— споТивачів, Ρ‰ΠΎ Π΄ΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ΡŒ Π²Ρ€Π°Ρ…ΡƒΠ²Π°Ρ‚ΠΈ корСляційні зв’язки ΠΌΡ–ΠΆ Ρ€Π΅ΠΆΠΈΠΌΠ°ΠΌΠΈ Ρ—Ρ… Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ. НавСдСно модСль Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ΅Π½Π΅Ρ€Π³Π΅Ρ‚ΠΈΡ‡Π½ΠΎΡ— установки, яка ΡΠΊΠ»Π°Π΄Π°Ρ”Ρ‚ΡŒΡΡ Π· ΠΌΠ΅Ρ€Π΅ΠΆΠΈ ΠΏΠ°Ρ€Π°Π»Π΅Π»ΡŒΠ½ΠΈΡ… взаємопов’язаних Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚Ρ–Π², Π±Π»ΠΎΠΊΡ–Π² Π½ΠΎΡ€ΠΌΠ°Π»Ρ–Π·Π°Ρ†Ρ–Ρ— сигналів Ρ‚Π° кСрування Ρ€Π΅ΠΆΠΈΠΌΠ°ΠΌΠΈ Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ Π³Π΅Π½Π΅Ρ€ΡƒΡŽΡ‡ΠΈΡ… Π°Π³Ρ€Π΅Π³Π°Ρ‚Ρ–Π² Ρ‚Π° яка ΠΌΠ°Ρ” засоби ΠΊΠΎΠΌΡƒΠ½Ρ–ΠΊΠ°Ρ†Ρ–Ρ— Π· ΡΠΈΡΡ‚Π΅ΠΌΠΎΡŽ кСрування Π±Π°Π·Π°ΠΌΠΈ Π΄Π°Π½ΠΈΡ… для збСрСТСння ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΈΡ… Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ– модСлювання Π΄Π°Π½ΠΈΡ….Β Π‘Ρ–Π±Π». 8, рис. 4

    Aharonov-Bohm interference in quantum ring exciton: effects of built-in electric fields

    Get PDF
    We report a comprehensive discussion of quantum interference effects due to the finite structure of excitons in quantum rings and their first experimental corroboration observed in the optical recombinations. Anomalous features that appear in the experiments are analyzed according to theoretical models that describe the modulation of the interference pattern by temperature and built-in electric fields.Comment: 6 pages, 7 figure

    InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate

    Get PDF
    Building optoelectronic devices on a Si platform has been the engine behind the development of Si photonics. In particular, the integration of optical interconnects onto Si substrates allows the fabrication of complex optoelectronic circuits, potentially enabling chip-to-chip and system-to-system optical communications at greatly reduced cost and size relative to hybrid solutions. Although significant effort has been devoted to Si light generation and modulation technologies, efficient and electrically pumped Si light emitters have yet to be demonstrated. In contrast, III–V semiconductor devices offer high efficiency as optical sources. Monolithic integration of III–V on the Si platform would thus be an effective approach for realizing Si-based light sources. Here, we describe the first superluminescent light-emitting diode (SLD) monolithically grown on Si substrates. The fabricated two-section InAs/GaAs quantum-dot (QD) SLD produces a close-to-Gaussian emission spectrum of 114 nm centered at 1255 nm wavelength, with a maximum output power of 2.6 mW at room temperature. This work complements our previous demonstration of an InAs/GaAs QD laser directly grown on a Si platform and paves the way for future monolithic integration of III–V light sources required for Si photonics

    Voltage recovery in charged InAs/GaAs quantum dot solar cells

    Get PDF
    The realization of high efficiency quantum dot intermediate band solar cells is challenging due to the thermally activated charge escaping at high temperatures. The enhancement in short circuit current of quantum dot solar cells is largely undermined by the voltage loss. In this paper, InAs/GaAs quantum dot solar cells with direct Si doping in the quantum dots are studied. The open circuit voltage is improved with increasing doping concentration in the quantum dots. The recovery of open circuit voltage as large as 105 mV is measured. This voltage recovery is attributed to suppressed charge thermal escaping from quantum dots. The suppressed thermal coupling is supported by the external quantum efficiency and photoluminescence measurements

    Raman scattering reveals strong LO-phonon-hole-plasmon coupling in nominally undoped GaAsBi: optical determination of carrier concentration

    Get PDF
    We report room-temperature Raman scattering studies of nominally undoped (100) GaAs1βˆ’xBix epitaxial layers exhibiting Biinduced (p-type) longitudinal-optical-plasmon coupled (LOPC) modes for 0.018≀x≀0.048. Redshifts in the GaAs-like optical modes due to alloying are evaluated and are paralleled by strong damping of the LOPC. The relative integrated Raman intensities of LO(Ξ“) and LOPC ALO/ALOPC are characteristic of heavily doped p-GaAs, with a remarkable near total screening of the LO(Ξ“) phonon (ALO/ALOPC β†’0) for larger Bi concentrations. A method of spectral analysis is set out which yields estimates of hole concentrations in excess of 5 Γ— 1017 cmβˆ’3 and correlates with the Bi molar fraction. These findings are in general agreement with recent electrical transport measurements performed on the alloy, and while the absolute size of the hole concentrations differ, likely origins for the discrepancy are discussed. We conclude that the damped LO-phonon-hole-plasmon coupling phenomena plays a dominant role in Raman scattering from unpassivated nominally undoped GaAsBi

    Mechanism of periodic height variations along self-aligned VLS-grown planar nanostructures

    Get PDF
    In this study we report in-plane nanotracks produced by molecular-beam-epitaxy (MBE) exhibiting lateral self-assembly and unusual periodic and out-of-phase height variations across their growth axes. The nanotracks are synthesized using bismuth segregation on the GaAsBi epitaxial surface, which results in metallic liquid droplets capable of catalyzing GaAsBi nanotrack growth via the vapor–liquid–solid (VLS) mechanism. A detailed examination of the nanotrack morphologies is carried out employing a combination of scanning electron and atomic force microscopy and, based on the findings, a geometric model of nanotrack growth during MBE is developed. Our results indicate diffusion and shadowing effects play significant roles in defining the interesting nanotrack shape. The unique periodicity of our lateral nanotracks originates from a rotating nucleation β€œhot spot” at the edge of the liquid–solid interface, a feature caused by the relative periodic circling of the non-normal ion beam flux incident on the sample surface, inside the MBE chamber. We point out that such a concept is divergent from current models of crawling mode growth kinetics and conclude that these effects may be utilized in the design and assembly of planar nanostructures with controlled non-monotonous structure

    THE APPLICATION OF A METHOD OF THE BOUNDARY INTEGRATED EQUATIONS FOR MODELING OF AERODYNAMIC STABILITY OF BRIDGE CONSTRUCTION

    No full text
    The work is devoted the modeling of oscillations of bridge construction taking into ac- count the forces of damping and rigidity. The boundary integral equation (BIE) in velocities of a multizonal body (gas + construction) is supplemented BIE oscillations of an elastic body (construction) that allows to find the increase of amplitude of their oscillation

    THE APPLICATION OF A METHOD OF BOUNDARY INTEGRAL EQUATIONS OF A THEORY OF ELASTICITY FOR MODELING OF AEROELASTICITY OF BRIDGE STRUCTURES

    No full text
    This work describes modeling of winding of bridge structures by the wind flow for non- bound systems with an application of a method of the boundary integral equations and is de- voted to aerodynamical analysis of bound systems of interaction of solid bodies and gas, i.e. to aeroelasticity of span structures and pylons. The solutions of the 'wind flow - bridge struc- tures' interaction problems in the form of multi zonal and variation approaches are shown in the theoretical part

    МодСль ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΆΠΈΠ·Π½Π΅Π½Π½ΠΎΠ³ΠΎ Ρ†ΠΈΠΊΠ»Π° мСдицинского здания

    No full text
    Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΊ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΎΠ½Π½ΠΎ-тСхнологичСской ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΆΠΈΠ·Π½Π΅Π½Π½ΠΎΠ³ΠΎ Ρ†ΠΈΠΊΠ»Π° здания мСдицинского учрСТдСния. ΠŸΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅, ΡΡ‚Ρ€ΠΎΠΈΡ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ ΠΈ эксплуатация Π·Π΄Π°Π½ΠΈΠΉ мСдицинских ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΉ ΠΈΠΌΠ΅ΡŽΡ‚ ряд особСнностСй. К зданиям ядСрной ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½Ρ‹ ΠΏΡ€Π΅Π΄ΡŠΡΠ²Π»ΡΡŽΡ‚ΡΡ особСнно высокиС трСбования Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΈ ΠΏΠΎΠΆΠ°Ρ€Π½ΠΎΠΉ бСзопасности. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Для ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ проСктирования, ΡΡ‚Ρ€ΠΎΠΈΡ‚Π΅Π»ΡŒΡΡ‚Π²Π° ΠΈ эксплуатации Π·Π΄Π°Π½ΠΈΠΉ мСдицинских ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΉ цСлСсообразно созданиС ΠΈ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΎΠ½Π½ΠΎ-тСхнологичСской ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΆΠΈΠ·Π½Π΅Π½Π½ΠΎΠ³ΠΎ Ρ†ΠΈΠΊΠ»Π° здания мСдицинского учрСТдСния. Вакая модСль создана Π°Π²Ρ‚ΠΎΡ€ΠΎΠΌ Π² Π²ΠΈΠ΄Π΅ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ бизнСс-процСссов. ΠŸΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅ эффСктивности ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΌΠ½ΠΎΠ³ΠΎΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ экспСртной ΠΎΡ†Π΅Π½ΠΊΠΈ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΡƒΠΊΠ°Π·Π°Π½Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ Π°Π²Ρ‚ΠΎΡ€ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠΈΠ» ряд ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ Π² порядок выполнСния инвСстиционного ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π°. Новым элСмСнтом являСтся ΠŸΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ обоснованиС Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π½ΠΈΠΉ ΠΊ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Ρƒ здравоохранСния. Оно Π΄ΠΎΠ»ΠΆΠ½ΠΎ ΡΡ‚Π°Ρ‚ΡŒ ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚ΠΎΠΌ ΠΏΡ€ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠΈ Π³Ρ€Π°Π΄ΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΠ»Π°Π½Π° зСмСльного участка, ΡΠ²Π»ΡΡŽΡ‰Π΅Π³ΠΎΡΡ Π΄Π΅-Ρ„Π°ΠΊΡ‚ΠΎ Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π° ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ Ρ‚Π°ΠΊΠΆΠ΅ ΡΠΎΡΡ‚Π°Π²Π»ΡΡ‚ΡŒ тСхничСскиС трСбования Ρ‚Ρ€Π΅Ρ… ΡƒΡ€ΠΎΠ²Π½Π΅ΠΉ. ВрСбования ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ уровня ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ для ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€ ΠΏΡ€Π΅Π΄ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π½ΠΎΠΉ стадии. ВрСбования Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ уровня входят Π² ΠΌΠ΅Π΄ΠΈΠΊΠΎ-тСхничСскоС Π·Π°Π΄Π°Π½ΠΈΠ΅ Π½Π° ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅. ВрСбования Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅Π³ΠΎ уровня ΠΏΡ€Π΅Π΄ΡŠΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΊ Ρ€Π°Π±ΠΎΡ‡Π΅ΠΉ Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΊ ΡΡ‚Ρ€ΠΎΠΈΡ‚Π΅Π»ΡŒΡΡ‚Π²Ρƒ ΠΈ эксплуатации ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°. ВрСбования Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‚ΡΡ Π² систСму ΠΈ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΡΡŽΡ‚ΡΡ Π½Π° ΠΊΠ»ΡŽΡ‡Π΅Π²Ρ‹Ρ… этапах Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π°. На ΠΏΡ€Π΅Π΄ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π½ΠΎΠΉ стадии цСлСсообразно ΡΠΎΡΡ‚Π°Π²Π»ΡΡ‚ΡŒ Ρ‚Π°ΠΊΠΆΠ΅ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΎ-экономичСский расчСт с обоснованиСм основных тСхничСских Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ ΠΈ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΎ-экономичСских ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ. Π’ этом Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π΅ Π΄ΠΎΠ»ΠΆΠ΅Π½ Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΠ»Π°Π½ управлСния ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΎΠΌ. НовыС элСмСнты Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‚ΡΡ Π² ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΎΠ½Π½ΠΎ-тСхнологичСскиС ΠΌΠΎΠ΄Π΅Π»ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… этапов ΠΆΠΈΠ·Π½Π΅Π½Π½ΠΎΠ³ΠΎ Ρ†ΠΈΠΊΠ»Π° ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°. Π’Ρ‹Π²ΠΎΠ΄Ρ‹. На основании Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ внСсти ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ‚ΠΈΠ²Ρ‹ Π² Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½ΠΎ-тСхничСскиС Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Ρ‹, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Π΅ ΠΏΡ€ΠΈ ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ ΡΡ‚Ρ€ΠΎΠΈΡ‚Π΅Π»ΡŒΡΡ‚Π²Π°. НапримСр, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ составлСниС Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΏΡ€Π΅Π΄ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π½ΠΎΠΉ стадии. Π­Ρ‚ΠΈ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π΄ΠΎΠ»ΠΆΠ½Ρ‹ Π±Ρ‹Ρ‚ΡŒ ΠΎΠΏΠ»Π°Ρ‡Π΅Π½Ρ‹ Π·Π° счСт инвСстора, поэтому Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ² стоимости ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π½Ρ‹Ρ… Ρ€Π°Π±ΠΎΡ‚ потрСбуСтся ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΡ‚ΡŒ

    Stabilization of the coherent emitter parameters for gas sensors

    No full text
    corecore