21 research outputs found

    Three Order Parameters in Quantum XZ Spin-Oscillator Models with Gibbsian Ground States

    No full text
    Quantum models on the hyper-cubic d-dimensional lattice of spin-1/2 particles interacting with linear oscillators are shown to have three ferromagnetic ground state order parameters. Two order parameters coincide with the magnetization in the first and third directions and the third one is a magnetization in a continuous oscillator variable. The proofs use a generalized Peierls argument and two Griffiths inequalities. The class of spin-oscillator Hamiltonians considered manifest maximal ordering in their ground states. The models have relevance for hydrogen-bond ferroelectrics. The simplest of these is proven to have a unique Gibbsian ground state

    Long Cycles in a Perturbed Mean Field Model of a Boson Gas

    Get PDF
    In this paper we give a precise mathematical formulation of the relation between Bose condensation and long cycles and prove its validity for the perturbed mean field model of a Bose gas. We decompose the total density ρ=ρshort+ρlong\rho=\rho_{{\rm short}}+\rho_{{\rm long}} into the number density of particles belonging to cycles of finite length (ρshort\rho_{{\rm short}}) and to infinitely long cycles (ρlong\rho_{{\rm long}}) in the thermodynamic limit. For this model we prove that when there is Bose condensation, ρlong\rho_{{\rm long}} is different from zero and identical to the condensate density. This is achieved through an application of the theory of large deviations. We discuss the possible equivalence of ρlong0\rho_{{\rm long}}\neq 0 with off-diagonal long range order and winding paths that occur in the path integral representation of the Bose gas.Comment: 10 page

    Diagonalization of an Integrable Discretization of the Repulsive Delta Bose Gas on the Circle

    Full text link
    We introduce an integrable lattice discretization of the quantum system of n bosonic particles on a ring interacting pairwise via repulsive delta potentials. The corresponding (finite-dimensional) spectral problem of the integrable lattice model is solved by means of the Bethe Ansatz method. The resulting eigenfunctions turn out to be given by specializations of the Hall-Littlewood polynomials. In the continuum limit the solution of the repulsive delta Bose gas due to Lieb and Liniger is recovered, including the orthogonality of the Bethe wave functions first proved by Dorlas (extending previous work of C.N. Yang and C.P. Yang).Comment: 25 pages, LaTe

    Widths of the Hall Conductance Plateaus

    Full text link
    We study the charge transport of the noninteracting electron gas in a two-dimensional quantum Hall system with Anderson-type impurities at zero temperature. We prove that there exist localized states of the bulk order in the disordered-broadened Landau bands whose energies are smaller than a certain value determined by the strength of the uniform magnetic field. We also prove that, when the Fermi level lies in the localization regime, the Hall conductance is quantized to the desired integer and shows the plateau of the bulk order for varying the filling factor of the electrons rather than the Fermi level.Comment: 94 pages, v2: a revision of Sec. 5; v3: an error in Sec. 7 is corrected, major revisions of Sec. 7 and Appendix E, Sec. 7 is enlarged to Secs. 7-12, minor corrections; v4: major revisions, accepted for publication in Journal of Statistical Physics; v5: minor corrections, accepted versio

    Two ways to solve ASEP

    Full text link
    The purpose of this article is to describe the two approaches to compute exact formulas (which are amenable to asymptotic analysis) for the probability distribution of the current of particles past a given site in the asymmetric simple exclusion process (ASEP) with step initial data. The first approach is via a variant of the coordinate Bethe ansatz and was developed in work of Tracy and Widom in 2008-2009, while the second approach is via a rigorous version of the replica trick and was developed in work of Borodin, Sasamoto and the author in 2012.Comment: 10 pages, Chapter in "Topics in percolative and disordered systems

    Bethe Ansatz for the Weakly Asymmetric Simple Exclusion Process and phase transition in the current distribution

    Full text link
    The probability distribution of the current in the asymmetric simple exclusion process is expected to undergo a phase transition in the regime of weak asymmetry of the jumping rates. This transition was first predicted by Bodineau and Derrida using a linear stability analysis of the hydrodynamical limit of the process and further arguments have been given by Mallick and Prolhac. However it has been impossible so far to study what happens after the transition. The present paper presents an analysis of the large deviation function of the current on both sides of the transition from a Bethe ansatz approach of the weak asymmetry regime of the exclusion process.Comment: accepted to J.Stat.Phys, 1 figure, 1 reference, 2 paragraphs adde

    Localization on quantum graphs with random vertex couplings

    Full text link
    We consider Schr\"odinger operators on a class of periodic quantum graphs with randomly distributed Kirchhoff coupling constants at all vertices. Using the technique of self-adjoint extensions we obtain conditions for localization on quantum graphs in terms of finite volume criteria for some energy-dependent discrete Hamiltonians. These conditions hold in the strong disorder limit and at the spectral edges

    Determinant representation for some transition probabilities in the TASEP with second class particles

    Full text link
    We study the transition probabilities for the totally asymmetric simple exclusion process (TASEP) on the infinite integer lattice with a finite, but arbitrary number of first and second class particles. Using the Bethe ansatz we present an explicit expression of these quantities in terms of the Bethe wave function. In a next step it is proved rigorously that this expression can be written in a compact determinantal form for the case where the order of the first and second class particles does not change in time. An independent geometrical approach provides insight into these results and enables us to generalize the determinantal solution to the multi-class TASEP.Comment: Minor revision; journal reference adde

    Current Fluctuations of the One Dimensional Symmetric Simple Exclusion Process with Step Initial Condition

    Full text link
    For the symmetric simple exclusion process on an infinite line, we calculate exactly the fluctuations of the integrated current QtQ_t during time tt through the origin when, in the initial condition, the sites are occupied with density ρa\rho_a on the negative axis and with density ρb\rho_b on the positive axis. All the cumulants of QtQ_t grow like t\sqrt{t}. In the range where QttQ_t \sim \sqrt{t}, the decay exp[Qt3/t]\exp [-Q_t^3/t] of the distribution of QtQ_t is non-Gaussian. Our results are obtained using the Bethe ansatz and several identities recently derived by Tracy and Widom for exclusion processes on the infinite line.Comment: 2 figure

    Non-Gibbsian Limit for Large-Block Majority-Spin Transformations

    No full text
    We generalize a result of Lebowitz and Maes, that projections of massless Gaussian measures onto Ising spin configurations are non-Gibbs measures. This result provides the first evidence for the existence of singularities in majority-spin transformations of critical models. Indeed, under the assumption of the folk theorem that an average-block-spin transformation applied to a critical Ising model in 5 or more dimensions converges to a Gaussian fixed point, we show that the limit of a sequence of majority-spin transformations with increasing block size applied to a critical Ising model is a measure that is not of Gibbsian type. KEY WORDS: Non-Gibbs measure; real-space renormalization. 1
    corecore