We introduce an integrable lattice discretization of the quantum system of n
bosonic particles on a ring interacting pairwise via repulsive delta
potentials. The corresponding (finite-dimensional) spectral problem of the
integrable lattice model is solved by means of the Bethe Ansatz method. The
resulting eigenfunctions turn out to be given by specializations of the
Hall-Littlewood polynomials. In the continuum limit the solution of the
repulsive delta Bose gas due to Lieb and Liniger is recovered, including the
orthogonality of the Bethe wave functions first proved by Dorlas (extending
previous work of C.N. Yang and C.P. Yang).Comment: 25 pages, LaTe