92 research outputs found

    Adoptive immunotherapy induces CNS dendritic cell recruitment and antigen presentation during clearance of a persistent viral infection

    Get PDF
    Given the global impact of persistent infections on the human population, it is of the utmost importance to devise strategies to noncytopathically purge tissues of infectious agents. The central nervous system (CNS) poses a unique challenge when considering such strategies, as it is an immunologically specialized compartment that contains a nonreplicative cell population. Administration of exogenously derived pathogen-specific memory T cells (referred to as adoptive immunotherapy) to mice burdened with a persistent lymphocytic choriomeningitis virus (LCMV) infection from birth results in eradication of the pathogen from all tissues, including the CNS. In this study, we sought mechanistic insights into this highly successful therapeutic approach. By monitoring the migration of traceable LCMV-specific memory CD8+ T cells after immunotherapy, it was revealed that cytotoxic T lymphocytes (CTLs) distributed widely throughout the CNS compartment early after immunotherapy, which resulted in a dramatic elevation in the activity of CNS antigen-presenting cells (APCs). Immunotherapy induced microglia activation as well as the recruitment of macrophages and dendritic cells (DCs) into the brain parenchyma. However, DCs emerged as the only CNS APC population capable of inducing memory CTLs to preferentially produce the antiviral cytokine tumor necrosis factor-α, a cytokine demonstrated to be required for successful immunotherapeutic clearance. DCs were also found to be an essential element of the immunotherapeutic process because in their absence, memory T cells failed to undergo secondary expansion, and viral clearance was not attained in the CNS. These experiments underscore the importance of DCs in the immunotherapeutic clearance of a persistent viral infection and suggest that strategies to elevate the activation/migration of DCs (especially within the CNS) may facilitate pathogen clearance

    IL-10 blockade facilitates DNA vaccine-induced T cell responses and enhances clearance of persistent virus infection

    Get PDF
    Therapeutic vaccination is a potentially powerful strategy to establish immune control and eradicate persistent viral infections. Large and multifunctional antiviral T cell responses are associated with control of viral persistence; however, for reasons that were mostly unclear, current therapeutic vaccination approaches to restore T cell immunity and control viral infection have been ineffective. Herein, we confirmed that neutralization of the immunosuppressive factor interleukin (IL)-10 stimulated T cell responses and improved control of established persistent lymphocytic choriomeningitis virus (LCMV) infection. Importantly, blockade of IL-10 also allowed an otherwise ineffective therapeutic DNA vaccine to further stimulate antiviral immunity, thereby increasing T cell responses and enhancing clearance of persistent LCMV replication. We therefore propose that a reason that current therapeutic vaccination strategies fail to resurrect/sustain T cell responses is because they do not alleviate the immunosuppressive environment. Consequently, blocking key suppressive factors could render ineffective vaccines more efficient at improving T cell immunity, and thereby allow immune-mediated control of persistent viral infection

    PI3K Orchestrates T Follicular Helper Cell Differentiation in a Context Dependent Manner: Implications for Autoimmunity

    Get PDF
    T follicular helper (Tfh) cells are a specialized population of CD4+ T cells that provide help to B cells for the formation and maintenance germinal centers, and the production of high affinity class-switched antibodies, long-lived plasma cells, and memory B cells. As such, Tfh cells are essential for the generation of successful long-term humoral immunity and memory responses to vaccination and infection. Conversely, overproduction of Tfh cells has been associated with the generation of autoantibodies and autoimmunity. Data from gene-targeted mice, pharmacological inhibitors, as well as studies of human and mice expressing activating mutants have revealed that PI3Kή is a key regulator of Tfh cell differentiation, acting downstream of ICOS to facilitate inactivation of FOXO1, repression of Klf2 and induction of Bcl6. Nonetheless, here we show that after acute LCMV infection, WT and activated-PI3Kή mice (Pik3cdE1020K/+) show comparable ratios of Tfh:Th1 viral specific CD4+ T cells, despite higher polyclonal Tfh cells in Pik3cdE1020K/+ mice. Thus, the idea that PI3K activity primarily drives Tfh cell differentiation may be an oversimplification and PI3K-mediated pathways are likely to integrate multiple signals to promote distinct effector T cell lineages. The consequences of dysregulated Tfh cell generation will be discussed in the context of the human primary immunodeficiency “Activated PI3K-delta Syndrome” (APDS), also known as “p110 delta-activating mutation causing senescent T cells, lymphadenopathy and immunodeficiency” (PASLI). Overall, these data underscore a major role for PI3K signaling in the orchestration of T lymphocyte responses

    Peripherally derived macrophages modulate microglial function to reduce inflammation after CNS injury

    Get PDF
    Infiltrating monocyte-derived macrophages (MDMs) and resident microglia dominate central nervous system (CNS) injury sites. Differential roles for these cell populations after injury are beginning to be uncovered. Here, we show evidence that MDMs and microglia directly communicate with one another and differentially modulate each other's functions. Importantly, microglia-mediated phagocytosis and inflammation are suppressed by infiltrating macrophages. In the context of spinal cord injury (SCI), preventing such communication increases microglial activation and worsens functional recovery. We suggest that macrophages entering the CNS provide a regulatory mechanism that controls acute and long-term microglia-mediated inflammation, which may drive damage in a variety of CNS conditions

    Intrinsic Functional Dysregulation of CD4 T Cells Occurs Rapidly following Persistent Viral Infection

    No full text
    Effective T-cell responses are critical to eradicate acute viral infections and prevent viral persistence. Emerging evidence indicates that robust, early CD4 T-cell responses are important in effectively sustaining CD8 T-cell activity. Herein, we illustrate that virus-specific CD4 T cells are functionally inactivated early during the transition into viral persistence and fail to produce effector cytokines (i.e., interleukin-2 and tumor necrosis factor alpha), thereby compromising an efficient and effective antiviral immune response. Mechanistically, the inactivation occurs at the cellular level and is not an active process maintained by regulatory T cells or antigen-presenting cells. Importantly, a small subpopulation of cells is able to resist inactivation and persist into the chronic phase of infection. However, the virus-specific CD4 T-cell population ultimately undergoes a second round of inactivation, and the cells that had retained functional capacity fail to respond to rechallenge in an acute time frame. Based on these results we propose a biological mechanism whereby early CD4 T-cell inactivation leads to a subsequent inability to sustain cytotoxic T-lymphocyte function, which in turn facilitates viral persistence. Moreover, these studies are likely relevant to chronic/persistent infections of humans (e.g., human immunodeficiency virus, hepatitis C virus, and hepatitis B virus) by providing evidence that a reservoir of virus-specific CD4 T cells can remain functional during chronic infection and represent a potential therapeutic target to stimulate the immune response and establish control of infection

    Viral Control of Glioblastoma

    No full text
    Glioblastoma multiforme (GBM) is a universally lethal cancer of the central nervous system. Patients with GBM have a median survival of 14 months and a 5-year survival of less than 5%, a grim statistic that has remained unchanged over the last 50 years. GBM is intransigent for a variety of reasons. The immune system has a difficult time mounting a response against glioblastomas because they reside in the brain (an immunologically dampened compartment) and generate few neoantigens relative to other cancers. Glioblastomas inhabit the brain like sand in the grass and display a high degree of intra- and inter-tumoral heterogeneity, impeding efforts to therapeutically target a single pathway. Of all potential therapeutic strategies to date, virotherapy offers the greatest chance of counteracting each of the obstacles mounted by GBM. Virotherapy can xenogenize a tumor that is deft at behaving like “self”, triggering adaptive immune recognition in an otherwise immunologically quiet compartment. Viruses can also directly lyse tumor cells, creating damage and further stimulating secondary immune reactions that are detrimental to tumor growth. In this review, we summarize the basic immune mechanisms underpinning GBM immune evasion and the recent successes achieved using virotherapies
    • 

    corecore