325 research outputs found
Orbital Dependent Exchange-Only Methods for Periodic Systems
Various orbital-dependent exchange-only potentials are studied which exhibit
correct long-range asymptotic behaviour. We present the first application of
these potentials for polymers and by one of these potentials for molecules.
Kohn-Sham type calculations have been carried out for polyethylene in order to
make valuable comparison of these potentials with each other as well as with
Hartree-Fock and exchange-only LDA methods. The Kohn-Sham band gap obtained
with the optimized effective potetial method is corrected with the exchange
contribution to the derivative discontinuity of the exchange-correlation
potential. The corrected band gap obtained with the Slater's exchange potential
is 9.7 eV close to the experiment.Comment: 11 pages, 2 figures. Phys. Rev. B60, 1999, in pres
Alternativas de manejo expectante de la rotura prematura de membranas antes de la viabilidad en embarazos únicos
La rotura prematura de membranas (RPM) antes de la viabilidad fetal constituye una complicación obstétrica de baja incidencia, pero que se asocia a una alta morbimortalidad materna y perinatal. No existen actualmente guías estandarizadas para el manejo expectante de esta patología, y las prácticas reportadas en la literatura para el enfrentamiento de este escenario clínico son variables. Aquí presentamos una revisión de la literatura de los últimos 10 años y proponemos una pauta de manejo para la RPM antes de la viabilidad basada en la evidencia disponible
Rate constants for the reactions of O+ with N2 and O2 as a function of temperature (300–1800 K)
This is the publisher's version, also available electronically from http://scitation.aip.org/content/aip/journal/jcp/106/9/10.1063/1.473450.We have studied the rate constants for the reaction of O+ with N2 over the temperature range 300–1600 K and the reaction of O+ with O2 over the range 300 to 1800 K. The results are in good agreement with previous measurements made up to 900 K. The rate constant for the O+reaction with N2 shows a minimum in the temperature range 1100–1300 K. The increase above this temperature is due to N2 v=2 becoming populated. The rate constant for O++O2 shows a minimum in the 800–1100 K range. Comparing to previous drift tube measurements allows the rate constant for O2 (v>0) to be derived. The v>0 rate constant is approximately five times larger than the v=0 rate constant
Recommended from our members
A comparison of spotlight synthetic aperture radar image formation techniques
Spotlight synthetic aperture radar images can be formed from the complex phase history data using two main techniques: (1) polar-to-cartesian interpolation followed by two-dimensional inverse Fourier transform (2DFFT), and (2) convolution backprojection (CBP). CBP has been widely used to reconstruct medical images in computer aided tomography, and only recently has been applied to form synthetic aperture radar imagery. It is alleged that CBP yields higher quality images because (1) all the Fourier data are used and (2) the polar formatted data is used directly to form a 2D Cartesian image and therefore 2D interpolation is not required. This report compares the quality of images formed by CBP and several modified versions of the 2DFFT method. We show from an image quality point of view that CBP is equivalent to first windowing the phase history data and then interpolating to an exscribed rectangle. From a mathematical perspective, we should expect this conclusion since the same Fourier data are used to form the SAR image. We next address the issue of parallel implementation of each algorithm. We dispute previous claims that CBP is more readily parallelizable than the 2DFFT method. Our conclusions are supported by comparing execution times between massively parallel implementations of both algorithms, showing that both experience similar decreases in computation time, but that CBP takes significantly longer to form an image
Hadron shower decomposition in the highly granular CALICE analogue hadron calorimeter
The spatial development of hadronic showers in the CALICE scintillator-steel
analogue hadron calorimeter is studied using test beam data collected at CERN
and FNAL for single positive pions and protons with initial momenta in the
range from 10 to 80 GeV/c. Both longitudinal and radial development of hadron
showers are parametrised with two-component functions. The parametrisation is
fit to test beam data and simulations using the QGSP_BERT and FTFP_BERT physics
lists from Geant4 version 9.6. The parameters extracted from data and simulated
samples are compared for the two types of hadrons. The response to pions and
the ratio of the non-electromagnetic to the electromagnetic calorimeter
response, h/e, are estimated using the extrapolation and decomposition of the
longitudinal profiles.Comment: 38 pages, 19 figures, 5 tables; author list changed; submitted to
JINS
Pion and proton showers in the CALICE scintillator-steel analogue hadron calorimeter
Showers produced by positive hadrons in the highly granular CALICE
scintillator-steel analogue hadron calorimeter were studied. The experimental
data were collected at CERN and FNAL for single particles with initial momenta
from 10 to 80 GeV/c. The calorimeter response and resolution and spatial
characteristics of shower development for proton- and pion-induced showers for
test beam data and simulations using Geant4 version 9.6 are compared.Comment: 26 pages, 16 figures, JINST style, changes in the author list, typos
corrected, new section added, figures regrouped. Accepted for publication in
JINS
On staying grounded and avoiding Quixotic dead ends
The 15 articles in this special issue on The Representation of Concepts illustrate the rich variety of theoretical positions and supporting research that characterize the area. Although much agreement exists among contributors, much disagreement exists as well, especially about the roles of grounding and abstraction in conceptual processing. I first review theoretical approaches raised in these articles that I believe are Quixotic dead ends, namely, approaches that are principled and inspired but likely to fail. In the process, I review various theories of amodal symbols, their distortions of grounded theories, and fallacies in the evidence used to support them. Incorporating further contributions across articles, I then sketch a theoretical approach that I believe is likely to be successful, which includes grounding, abstraction, flexibility, explaining classic conceptual phenomena, and making contact with real-world situations. This account further proposes that (1) a key element of grounding is neural reuse, (2) abstraction takes the forms of multimodal compression, distilled abstraction, and distributed linguistic representation (but not amodal symbols), and (3) flexible context-dependent representations are a hallmark of conceptual processing
A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions
Conservation agriculture involves reduced tillage, permanent soil cover and crop rotations to enhance soil fertility and to supply food from a dwindling land resource. Recently, conservation agriculture has been promoted in Southern Africa, mainly for maize-based farming systems. However, maize yields under rain-fed conditions are often variable. There is therefore a need to identify factors that influence crop yield under conservation agriculture and rain-fed conditions. Here, we studied maize grain yield data from experiments lasting 5 years and more under rain-fed conditions. We assessed the effect of long-term tillage and residue retention on maize grain yield under contrasting soil textures, nitrogen input and climate. Yield variability was measured by stability analysis. Our results show an increase in maize yield over time with conservation agriculture practices that include rotation and high input use in low rainfall areas. But we observed no difference in system stability under those conditions. We observed a strong relationship between maize grain yield and annual rainfall. Our meta-analysis gave the following findings: (1) 92% of the data show that mulch cover in high rainfall areas leads to lower yields due to waterlogging; (2) 85% of data show that soil texture is important in the temporal development of conservation agriculture effects, improved yields are likely on well-drained soils; (3) 73% of the data show that conservation agriculture practices require high inputs especially N for improved yield; (4) 63% of data show that increased yields are obtained with rotation but calculations often do not include the variations in rainfall within and between seasons; (5) 56% of the data show that reduced tillage with no mulch cover leads to lower yields in semi-arid areas; and (6) when adequate fertiliser is available, rainfall is the most important determinant of yield in southern Africa. It is clear from our results that conservation agriculture needs to be targeted and adapted to specific biophysical conditions for improved impact
E-Cadherin Is Required for Centrosome and Spindle Orientation in Drosophila Male Germline Stem Cells
Many adult stem cells reside in a special microenvironment known as the niche, where they receive essential signals that specify stem cell identity. Cell-cell adhesion mediated by cadherin and integrin plays a crucial role in maintaining stem cells within the niche. In Drosophila melanogaster, male germline stem cells (GSCs) are attached to niche component cells (i.e., the hub) via adherens junctions. The GSC centrosomes and spindle are oriented toward the hub-GSC junction, where E-cadherin-based adherens junctions are highly concentrated. For this reason, adherens junctions are thought to provide a polarity cue for GSCs to enable proper orientation of centrosomes and spindles, a critical step toward asymmetric stem cell division. However, understanding the role of E-cadherin in GSC polarity has been challenging, since GSCs carrying E-cadherin mutations are not maintained in the niche. Here, we tested whether E-cadherin is required for GSC polarity by expressing a dominant-negative form of E-cadherin. We found that E-cadherin is indeed required for polarizing GSCs toward the hub cells, an effect that may be mediated by Apc2. We also demonstrated that E-cadherin is required for the GSC centrosome orientation checkpoint, which prevents mitosis when centrosomes are not correctly oriented. We propose that E-cadherin orchestrates multiple aspects of stem cell behavior, including polarization of stem cells toward the stem cell-niche interface and adhesion of stem cells to the niche supporting cells
Cell-scale degradation of peritumoural extracellular matrix fibre network and its role within tissue-scale cancer invasion
Local cancer invasion of tissue is a complex, multiscale process which plays
an essential role in tumour progression. Occurring over many different temporal
and spatial scales, the first stage of invasion is the secretion of matrix
degrading enzymes (MDEs) by the cancer cells that consequently degrade the
surrounding extracellular matrix (ECM). This process is vital for creating
space in which the cancer cells can progress and it is driven by the activities
of specific matrix metalloproteinases (MMPs). In this paper, we consider the
key role of two MMPs by developing further the novel two-part multiscale model
introduced in [33] to better relate at micro-scale the two micro-scale
activities that were considered there, namely, the micro-dynamics concerning
the continuous rearrangement of the naturally oriented ECM fibres within the
bulk of the tumour and MDEs proteolytic micro-dynamics that take place in an
appropriate cell-scale neighbourhood of the tumour boundary. Focussing
primarily on the activities of the membrane-tethered MT1-MMP and the soluble
MMP-2 with the fibrous ECM phase, in this work we investigate the MT1-MMP/MMP-2
cascade and its overall effect on tumour progression. To that end, we will
propose a new multiscale modelling framework by considering the degradation of
the ECM fibres not only to take place at macro-scale in the bulk of the tumour
but also explicitly in the micro-scale neighbourhood of the tumour interface as
a consequence of the interactions with molecular fluxes of MDEs that exercise
their spatial dynamics at the invasive edge of the tumour
- …