
SANDIA REPORT 

Unlimited Release 
Printed October 1996 

SAND96-2460 UC-900 

C 

A Comparison of Spotlight Synthetic Aperture 
Radar Image Formation Techniques 

Curtis D. Knittle, Neal1 E. Doren, Charles V. Jakowatz 

4 

Prepared by 
Sandia National Laboratories 
Albuquerque, New Mexico 87185 and Livermore, California 94550 
for the United States Department of Energy 
under Contract DE-AC04-94AL85000 

Approved for public re1 ibution is unlimited. 

SF29000(8-81) 



. 

Issued by Sandia National Laboratories, operated for the United States 
Department of Energy by Sandia Corporation. 
NOTICE: This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States Govern- 
ment nor any agency thereof, nor any of their employees, nor any of their 
contractors, subcontractors, or their employees, makes any warranty, 
express or implied, or assumes any legal liability or responsibility for the 
accuracy, completeness, or usefulness of any information, apparatus, prod- 
uct, or process disclosed, or represents that its use would not infringe pri- 
vately owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, 
or favoring by the United States Government, any agency thereof or any of 
their contractors or subcontractors. The views and opinions expressed 
herein do not necessarily state or reflect those of the United States Govern- 
ment, any agency thereof or any of their contractors. 

Printed in the United States of America. This report has been reproduced 
directly from the best available copy. 

Available to DOE and DOE contractors from 
Office of Scientific and Technical Information 
PO Box 62 
Oak Ridge, TN 37831 

Prices available from (615) 576-8401, FTS 626-8401 

Available to the public from 
National Technical Information Service 
US Department of Commerce 
5285 Port Royal Rd 
Springfield, VA 22161 

NTIS price codes 
Printed copy: A03 
Microfiche copy: A01 

, 



DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the 
United States Government. Neither the United States Government nor any agency 
thereof, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal liability or responsibility for the accuracy, completeness, or use- 
fulness of any information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference herein to any spe- 
cific commercial product, process, or service by trade name, trademark, rnanufac- 
turer, or otherwise does not necessarily constitute or imply its endorsement, fccom- 
mendation, or favoring by the United States Government or any agency thereof. 
The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof. 



DISCLAIMER 

Portions of this document may be illegible 
in electronic image products. Images are 
produced from the best available original 
document. 



SAND96-2460 
Unlimited Release 

Printed October 1996 

Distribution 
Category UC-900 

A Comparison of Spotlight Synthetic Aperture 
Radar Image Formation Techniques 

Curtis D. Knittle, Neal1 E. Doren and Charles V. Jakowatz 
Advanced Analysis Department 
Sandia National Laboratories 

Albuquerque, NM 87185 

Abstract 
Spotlight synthetic aperture radar images can be formed from the complex phase his- 

tory data using two main techniques: 1) polar-to-Cartesian interpolation followed by two- 
dimensional inverse Fourier transform (2DFFT) , and 2) convolution backprojection (CBP) . 
CBP has been widely used to reconstruct medical images in computer aided tomography, and 
only recently has been applied to form synthetic aperture radar imagery. It is alleged that 
CBP yields higher quality images because 1) all the Fourier data are used and 2) the polar 
formatted data is used directly to form a 2D Cartesian image and therefore 2D interpolation 
is not required. 

This report compares the quality of images formed by CBP and several modified versions 
of the 2DFFT method. We show from an image quality point of view that CBP is equivalent 
to first windowing the phase history data and then interpolating to  an exscribed rectangle. 
From a mathematical perspective, we should expect this conclusion since the same Fourier 
data are used to  form the SAR image. 

We next address the issue of parallel implementation of each algorithm. We dispute previ- 
ous claims that CBP is more readily parallelizable than the 2DFFT method. Our conclusions 
are supported by comparing execution times between massively parallel implementations of 
both algorithms, showing that both experience similar decreases in computation time, but 
that CBP takes significantly longer to form an image. 
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1 Introduction 
The tomographic viewpoint of spotlight mode synthetic aperture radar has established that a 
demodulated, reflected pulse represents a bandpass-filtered radial, slice of the two-dimensional 
Fourier transform of the ground-patch reflectivity [l]. The angle of the radial slice is equal to 
the slant plane squint angle of the radar at the time the pulse was transmitted. The nonzero 
region of the radial slice (i.e. the passband) is centered at the radar carrier frequency, fc, 
and the width is governed by the bandwidth of the transmitted pulse, Af .  (We assume 
throughout that frequencies are in spatial units, i.e. fc = :(carrier in Hz)). The collection 
of demodulated returns gathered over the entire synthetic aperture yields Fourier data in 
the annulus segment shown in Fig. 1. Pulses are transmitted at  discrete points along 
the aperture, so consequently the total angle subtended by the synthetic aperture is sampled 
according to the pulse repetition frequency of the radar and the velocity of the radar platform. 
Similarly, the demodulated return pulses are sampled for storage and processing. Hence, 
the collection of return pulses actually represents a sampled version of the two-dimensional 
Fourier transform of the ground-patch reflectivity, but only data in the annulus segment 
shown in Fig. 1 is nonzero. The radial dimension is alternatively called range, while cross- 
range or azimuth refers to the dimension orthogonal to range. 

U 

Figure 1: Fourier-domain annulus region where SAR collects data. 

Whether the viewpoint is tomographic or Doppler, the image formation problem becomes 
one of inverting offset Fourier data that is recorded on a polar grid. One inversion method, 
called the 2DFFT method, strives to exploit the speed of the. Fast Fourier Transform (FFT) 
algorithm by reformatting the data on the polar grid to lie on a Cartesian grid. This “polar 
reformatting” is then followed by a two-dimensional inverse FFT (IFFT) to obtain the image. 

More recently, a method known as convolution backprojection (CBP) has been proposed 
for spotlight mode SAR image reconstruction [l], [2]. CBP uses the data on the polar grid 
directly to form a Cartesian image, and allegedly yields a higher quality image because all 
the Fourier data are used and two-dimensional interpolation is not required. 
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This report describes in detail the implementation issues of the CBP algorithm, and 
more importantly addresses some of the claims made in [2]. In particular, we examine the 
conclusion that CBP provides better image quality than 2DFFT because "polar-to-Cartesian 
interpolation is computationally intensive and error prone due to interpolation inaccuracies" 
[2] and "polar-to-rectangular interpolation, which limits the achievable resolution, and there- 
fore, the quality of the final image" [2]. We also dispute the assertion that CBP is better 
suited to parallel implementation, and show by way of examples that linear interpolation 
(and certainly nearest neighbor) is not acceptable under certain conditions. This report 
accomplishes these goals in the following manner. In the next section, a brief overview of the 
2DFFT method is given, followed by the theoretical basis and implementation issues of CBP. 
Following the CBP presentation, we direct attention to SAR image quality obtained using 
each method. A comparison using simulated SAR data is performed using more meaningful 
quality measures than that used in [2], and we show experimentally and theoretically that 
CBP does not yield higher quality images than the 2DFFT method. Then, we examine the 
parallel implementation of both image formation methods and show that the 2DFFT method 
is also inherently parallel. We use actual image formation times to reinforce our conclusion 
that both algorithms experience equivalent increases in speed. We summarize our results 
and offer additional conclusions at the end of this report. 

Polar Grid 
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Figure 2: Two steps in interpolation process first yields a keystone grid, then a Cartesian 
grid. 

2 Two-Dimensional FFT Method 
The 2DFFT method is very straight forward in concept. Given Fourier data lying on a 
polar grid, two-dimensional interpolation techniques are used to derive values on a Cartesian 
grid. Once data are available on a Cartesian grid, the data are windowed and a 2D IFFT 
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is performed to obtain spatial domain data, also on a Cartesian grid. The magnitude of the 
spatial domain data is then displayed on any suitable monitor. 

The interpolation step is usually computationally expensive and must be very accurate. 
Several techniques exist to accomplish polar-to-Cartesian reformatting [3]. The algorithm of 
choice for this report uses separable one-dimensional, windowed, sine functions. The first 
step, shown in Fig. 2, involves interpolating in the radial, or range, dimension to obtain a 
keystone grid, which yields Fourier data on equidistant horizontal lines. The second step 
interpolates data on the keystone grid to derive data on equidistant vertical lines, thus 
yielding data on a Cartesian grid. This step is also shown in Fig. 2. More details of polar- 
to-Cartesian interpolation are given in [4, 5, 61. 

We must address the contention in [2] that interpolation is “ inacc~ra te~~.  If we are to 
believe the sampling theorem, which states that any continuous analog signal can be exactly 
reconstructed by samples of the signal taken at the Nyquist rate, then it should follow 
that correctly reconstructing the analog signal from its samples, and then resampling at 
the desired locations should be perfectly acceptable. “Correctly” reconstructing the original 
signal implies using an infinite-length sinc() interpolator. Infinite-length sine() interpolation 
in the Fourier domain corresponds to multiplying the terrain of interest in the spatial domain 
by an ideal 2D spatial rectangular window. Truncating an infinite-length sine() interpolator 
to a k-length interpolator is equivalent to multiplying the infinite-length interpolator by a 
k-length Fourier domain rectangular window. In the spatial domain, this corresponds to 
convolving the ideal spatial domain rectangular window with the inverse Fourier transform 
of the k-length Fourier domain rectangular window. The effect is to introduce the Gibbs 
phenomenon at the edges and to alter the amplitude of the 2D spatial domain rectangular 
passband. The edge effects cause aliased energy to be folded back into the terrain of interest, 
while the amplitude effects cause the magnitude of the image to be weighted differently. The 
severity of both these effects depends on the length of the Fourier domain window, or, 
on the length of the interpolator. In addition, windows tapered at the edges, like Taylor, 
Hamming, etc., are applied to the sine() interpolator to reduce the effects just described. 
Based on this qualitative description of interpolation, one may conclude that interpolation 
causes errors near the patch edges due to  aliased energy folding into the patch, but to  state 
that interpolation is inaccurate and yields poorer results across the entire spatial domain 
image would be “inaccurate”. 

After the data has been reformatted to a rectangular Cartesian grid, a window such as 
a Taylor window is applied to each dimension before performing a 2D IFFT. Note that 
there are many rectangular grid sizes that the polar data could be interpolated to. Two of 
these are shown in Fig. 3, where in one case a rectangular region is inscribed, and in the 
other a rectangular region is exscribed. Significant differences exist in the spatial domain 
image depending on whether inscribing or exscribing is used, and furthermore, where the 
windowing step is accomplished. One can see that when a rectangle is exscribed, some of the 
grid points in the lower corners will be zero because the data’in this region is zero. However, 
only in the exscribed case is all the polar data used in the image formation; the inscribed 
case does not use all the polar formatted data. More will be said about this later in this 
report. 
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Figure 3: Grid point locations for inscribed and exscribed rectangles. 

3 Convolution Backprojection Method 
Convolution backprojection has historically been used to form images in computer aided 
tomography (CAT) [7, 8, 91. We begin presenting the theoretical basis for CBP by writing 
the 2D Fourier transform pair: 

where g(z,y) represents the 2D spatial complex reflectivity function of the ground patch 
being imaged, and G(u, v) is the Cartesian Fourier transform of g(x, y). It can be shown that 
if G(p, 8) is the polar representation of the 2D Fourier transform of g(z, y), then the inverse 
Fourier transform Eq. 2 can be written as 

Where 8 is measured with respect to the positive abscissa axis. If we define a variable t such 
that 

then Eq. 3 becomes 

t = x cos(8) + y sin(@) (4) 

g(z, y) = 1" Srn G(p, dp d8. 
0 -w 

If we further define the "filtered projection" function qe( t )  as 

(5) 
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then Eq. 5 becomes 

The two steps represented by Eqs. (6) and (7) define the CBP algorithm and allow a Cartesian 
spatial domain image to be formed directly from polar Fourier domain data. Note that Eqs. 
(2) and (5) are essentially mathematical identities. That is, 

The 2D function f(z, y) can be formed using either Eq. (2) or Eq. (5)) but theoretically the 
results should be identical! 

Equation (6) represents the "convolution" portion of the CBP algorithm because qe(t) is 
nothing more than a linear filtering operation, i.e. a convolution. To see this, note that for 
a particular value of 8, the radial slice of the Fourier transform, G(p, e), can be considered 
a one-dimensional function of p ;  call it Pe(p). Equation (6) directs us to multiply Pe(p) by 
lpl and then perform an inverse Fourier transform on the product. This is frequency domain 
filtering. The equivalent time domain representation of Eq. (6) is 

and 

where * denotes convolution, 

J-00 

That is, h(t) is simply the impulse response of a filter whose frequency response is 

After computing qe(t) ,  this function must be "backprojected", as specified by Eq. (7). 
The backprojection operation can be described by considering Eq. (7) together with Fig. 4, 
which shows a filtered projection for the angle 0. For every point on the Cartesian grid, the 
value o f t  is computed, i.e. 

The contribution to  g(z1,yl) made by this projection function is Qe(t1) where tl is given 
by Eq. (13). Note that the point (z2,y2) will also give the same value o f t ,  and thus the 
contribution to g(z2,y2) is also qs(t1). In fact, for this value of 8, every point on the line 
defined by the two points (XI, y1) and ( ~ 2 ~ 9 2 )  will receive the same contribution from %(t).  In 
other words, all grid points lying on a line oriented at an angle 8 with respect to the horizontal 
axis, and whose orthogonal distance to the origin is tl ,  will receive the same contribution from 
qe( t ) ,  namely qe(t1). In this sense, the filtered projection is "backprojected" or "smeared" 
back onto the Cartesian image. The integration of all filtered projections backprojected onto 
the image yields the final result. Note that for only one angle do the points (z1,yl) and 
(572, y2) receive the same contribution. 

tl = z1 cos(8) + y1 sin(@). (13) 
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0 X - . . . .  ' ' , . ... , 
'. . . . . , ....... 

Figure 4: Image and filtered projection arrangement for backprojection step. 

Modified CBP for SAR Image Formation 
When considering data collected by a SAR, several modications are made to the fundamental 
equations. Since data is nonzero only in the region shown in Fig. 1, the limits of integration 
in Eq. (5) must be changed. Specifically, Eq. (5) becomes 

One more simplification can be made by a simple change of variables: 

$+Om +f 

g(x, y) = G(p  + fc, 0) lp  + fclej2@ dp ejaTfCt de. 
2 - -0, 2 

With these steps, the filtered projection function is 

and the backprojection equation becomes 

(15) 
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4.1 

Figure 5: Frequency domain specifications of filter for SAR data. 

Discrete Implementation Issues 
We begin discussing implementation issues by first considering the filtered projection Eq. 
(16). The change of variables performed in the previous paragraph shifted the Fourier data 
from a center frequency of fc to baseband. Thus, a one-dimensional FFT can be used to 
obtain qs(t) after the filtering operation. Note that due to the shift in frequency, the Fourier 
data must be multiplied by a filter whose frequency characteristics match those shown in 
Fig. 5 (i.e. a shifted segment of [ P I ) .  

Assuming that there are N, samples per pulse, the interval between samples in the radial 
dimension is 

Af 6 --. ’- N, 
To use the FFT algorithm, the N, samples must be zero-padded to a length which is a power 
of two. That is, we choose the FFT length to be M ,  where 2M 2 N,. As a result, the spacing 
between samples of qe(t) will be 

and therefore the values q0(nSt) will be available for use in the backprojection step. Note 
that both positive and negative values of n are available. 

Conversion of the backprojection step is straight forward. Since the angle subtended by 
the radar is actually sampled, the backprojection formula Eq. (17) becomes 

where Bi represents the angle of the ith pulse, and Np is the number of pulses transmitted 
during data collection. Normally there is a scale factor in front of the summation, but 
removing it is inconsequential since all pixels are scaled by the same value. 

During the backprojection step, the spacing between pixels in the spatial domain can 
be arbitrarily assigned. For example, if S, and Sy represent scale factors for the x and y 
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dimensions, respectively, then the value of t for some grid location (z, y) is computed using 

t = z6, cos(t9) + y6, sin(t9). 

One can see that if z and y are in units of “pixels”, and 6, and dY are in units of “dis- 
tance/pixel”, then the units o f t  will be distance. One may choose 6, and Sy to “zoom in” 
or “zoom O U ~ ”  to  any level desired. 

Once the value o f t  is computed via Eq. (21), a decision must be made about what value 
is backprojected to the point (z, y). One can easily see that it is likely t # n& for all values 
of n. Therefore, one-dimensional interpolation must be performed to obtain the value qe(t) ,  
which is between qs(h6t) and qe((h f l)&), where 

t 
f i  = integer value of (-), 

St 

and + is used if t 2 0 and - is used if t < 0. 
The one-dimensional interpolation step mentioned in the previous paragraph is a critical 

issue. It is believed in [2] that linear interpolation or nearest neighbor assignment can be 
used to obtain qe(t) .  We believe that nearest neighbor assignment is not conducive to SAR 
image formation because this nonlinear operation would inject phase errors into the data. 
In addition, linear interpolation may be used but only if St << 1. Examples of the effects of 
linear interpolation will be shown in a later section. 

Multiplication by eJ2rfct in Eq. (20) is also a critical step. Unlike the 2DFFT method, 
where a shift of the data to the origin does not affect the magnitude of the spatial domain 
image, the complex exponential in Eq. (20) is a function of 19 and 
in the integration over 8. Interpolation is not required to obtain 
use the exact value for t from Eq. (21). 

5 SAR Simulations 

therefore must be included 
the proper value of e J 2 r f c t ;  

We have the benefit of using a spotlight mode synthetic target generator to simulate actual 
SAR data collections. All required parameters for SAR data collection can be specified; 
some of these include bandwidth, center frequency, chirp rate, pulse repetition frequency, 
collection geometry, and the number and location of as many targets desired. The simulator 
provides phase history data (i.e. Fourier domain data) as though it were a real SAR. 

If there are differences in image quality depending on the formation technique used, 
we are more likely to see the variations if we have high resolution. For this reason, we 
maintain the SAR parameters to provide one foot (0.3m) resolution in both range and 
azimuth (cross-range). We accomplish 0.3m resolution in range by using a pulse bandwidth 
of 500 MHz, which translates to Af = $ 5 ~ 1 0 ~  = 3.3333m-l., If T~ represents the achievable 
range resolution, then 

1 I 
“lr E - = 0.3m. a f  

The achievable azimuth resolution, ‘ya, is approximately given by [l] 
C 

“la - 7  
4fc07n 
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Figure 6: Target arrangement on ground patch for simulations. 

where Af,  fc, and 0, are shown in Fig. 1. We choose four sets of pairs (fc, em) to maintain 
ya 0.3m. These are: A-(223.3m-l, 0.4276'), B-(lOOm-l, 0.9549'), C-(50m-l, 1.9102'), 
and D-(25m-l, 4.000'). 

A standard arrangement of targets on the ground is used for each simulation. The 
arrangement, shown in Fig. 6, encompasses all the extreme locations where a target may 
be located, i.e. near range, patch center, far range, azimuth edge, and a combination of far 
range - azimuth edge. It has been our experience that targets near the center of the patch 
behave nicely under most circumstances, so we include targets at  the patch edges. 

We form the simulated images exactly like we form non-simulated images. This is an 
important distinction from the work done in [2], where the grid size was chosen so that 
the nulls of the sidelobes fall on a grid point, thereby entirely removing sidelobes from the 
image. Sidelobes are an important and unavoidable consequence of using finite length data 
and therefore should be examined along with the mainlobe. 

When we measure the quality of an image, we avoid using the multiplicative noise ratio 
[2] because it ignores sidelobe issues. Instead, we use three quality measures that we judge to 
represent how closely a target resembles an impulse: -3 dB width, -18 dB width, and peak- 
to-sidelobe (PSL) ratio. To illustrate our use of these measures, refer to Fig. 7, which shows 
the impulse response (IPR) of a Taylor window. The plots are always normalized so that 
the peak corresponds to 0 dB. Therefore, the PSL ratio can be measured by finding the level 
of the highest sidelobe. In the example of Fig. 7, the IPR has the following characteristics: 
PSL ratio is -40 dB, -3 dB width is 1.25, -18 dB width is 2.8125. 

A target's IPR is measured by first extracting a slice of the image through the target, 
normally an azimuth (horizontal) slice or a range (vertical) slice. Then an FFT of the slice 
is computed, the Fourier sequence is zero padded to a longer length, and an inverse FFT is 
computed, the magnitude of which is displayed. Zero padding to a longer length interpolates 
between samples in the spatial domain and yields a smoother plot. The reason an azimuth or 
range IPR is studied is because the sidelobes are usually in the azimuth and range dimension. 
This is because sidelobes extend in a direction orthogonal to the discontinuities in the Fourier 
domain. For example, in the case of an inscribed rectangle, the Fourier domain edges are both 
horizontal and vertical, which gives rise to vertical and horizontal sidelobes, respectively, in 
the spatial domain. On the other hand, if the nonzero region in the Fourier domain were 
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Figure 7: Taylor window IPR showing quality measures. 

shaped similar to  a trapezoid (as it is in the case of exscribing a rectangle), then multiple 
sets of sidelobes appear in the spatial domain image. This situation is depicted in Fig. 8. 

It would not be fair to compare an azimuth IPR (horizontal slice) from the two situations 
shown in Fig. 8 because in the upper case, the IPR continues to slice through the sidelobes, 
while this is not the case for the lower sidelobe structure. A slight modification is required to 
our previous definition of an IPR plot to equalize the contribution from the sidelobes in either 
case. In essence, sidelobes represent a deviation from a perfect point target (an impulse), 
and they also interfere with other targets close by. For example, if a target is located on 
a sidelobe of a nearby target, the magnitude of the target could be artificially boosted 
or reduced depending on whether the sidelobe interfered constructively or destructively. 
Consequently, the most important sidelobe to measure is the maximum sidelobe in a certain 
region about the target. For this reason, when computing an azimuth IPR, for example, 
for a particular azimuth position (column), several range lines (rows) above and below the 
target range line will be scanned for the maximum magnitude. The maximum magnitude 
is used in the IPR plot. Using the new definition of the IPR will not alter the appearance 
of an IPR for a target generated by an inscribed rectangle because the largest magnitudes 
already lie on the horizontal line intersecting the target. However, the new IPR definition 
will drastically alter an IPR from an exscribed rectangle because it will use the maximum 
magnitude from either of the diagonal sidelobe traces. 

5.1 Comparisons 
For each set of SAR parameters, we form four different images. The steps taken to form 
the first image include polar-to-Cartesian interpolation in an inscribed rectangle, followed by 
windowing, then computing the 2D inverse FFT. We refer to the formed image as an “IW” 
image (inscribe then window). An “XW” image (exscribe then window) is formed using 
interpolation to an exscribed rectangle, windowing, and 2D inverse FFT. A “WX” image 
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Figure 8: Shows spatial domain sidelobe structure corresponding to Fourier domain shape. 

(window then exscribe) is formed by first applying what amounts to a polar windowing 
scheme, then interpolate to an exscribed rectangle, followed by a 2D inverse FFT. The 
fourth image is the “CBP” image formed using convolution backprojection. The windows 
applied were Taylor windows with -40 dB sidelobes. 

We routinely use a 17-point sinc() interpolator for polar-to-Cartesian interpolation, while 
in [2], the largest interpolator used was length 14. Judging from the results given in [2], a 
17-point interpolator would improve the MNR for the direct Fourier method in each case. 

We focus most of our attention on the images formed using the “A”-image parameters, 
(fc, 0,) = (223.3m-l, 0.4276”), and the “D”-image parameters, (fc, e,) = (25m-l, 4.000”) 
since these two represent the most extreme angle diversities. The “A” images are shown in 
Fig. 9, while the “D” images are shown in Fig. 10. Note the sidelobes for each case fan out 
in a direction orthogonal to the discontinuities in the Fourier domain, as described earlier. 
Recall that the angle subtended in the “A” images is less than 1”; hence, the sidelobes appear 
similar to the inscribed case only because the angle between them is very small. 

It is asserted in [2] that one reason CBP renders higher quality images is because all the 
Fourier data are used. They refer to the fact that an inscribed rectangle does not use all the 
Fourier data in the annulus shown in Fig. 1. This is what the authors of 123 must have meant 
when they stated that “polar-to-Cartesian interpolation limits the achievable resolution, and 
therefore, the final image quality.” This correlates well with our intuition and also with 
the fundamental equations given in [l] showing that higher resolution is attainable if larger 
bandwidths are used. However, as pointed out previously, we are not restricted to interpolate 
to an inscribed rectangle. Furthermore, from a theoretical point of view, we can not form 
an image with better resolution than what the size of the collected Fourier data dictates. 
We can not magically create more Fourier data resulting in an improved image. We can, 
however, massage the data in different ways to better utilize the structure or format of the 
data, as CBP appears to do by using the polar formatted data directly. Recall, however, 
that if the Fourier data is reformatted to an exscribed rectangular grid, or, if CBP is used 
to form the image, all the Fourier data are used. Given the mathematics in Eq. (8), we 
hypothesized that similar quality images should result i f  the same steps are taken, in the 

11 



Figure 9: Images formed from “A” parameters. (a) IW. (b) XW. (c) CBP. (d) WX. 
(labeled clockwise from upper left) 
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Figure 10: Images formed from “D” parameters. (a) IW. ‘(b) XW. (c) CBP. (d) WX. 
(labeled clockwise from upper left) 
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same order, and the same Fourier data are used, regardless of the inverse Fourier transform 
technique, CBP or interpolation/2DIFFT. This was the motivation for windowing the data 
before reformatting to an exscribed rectangle. In fact, the windowing scheme employed in 
the WX and CBP images are identical; the first step in either process is to window in the 
range (radial) dimension and then the cross-range (angular) dimension. If our hypothesis is 
correct, the difference between the WX and CBP images should be negligible. 

Target IPR’s from each image formation technique using the “A” parameters are shown 
in Fig. 11, where the plots in Fig. l l(a) are from the center target and Fig. l l (b )  are 
from the upper left target (azimuth edge-far range). Because the total angle subtended is 
only 28, = 0.8552”) we do not expect much difference between the four image formation 
techniques. The reason is because the Fourier data patch is nearly rectangular, and inscribing 
a rectangle does not discard large quantities of Fourier data. The results in Fig. 11 show 
the following. First, the XW IPR exhibits the narrowest main lobe because the length of the 
Taylor window is longer in the cross-range dimension, and all the Fourier data are used. It 
is well known that a longer window provides a narrower main lobe than a shorter window, 
and, Eq. (24) shows that if more bandwidth is used, better resolution results. While it is 
difficult to see, the WX and CBP IPR’s are overlapping in the main lobe region and provide 
the second narrowest main lobe. It is true that both these techniques use all the Fourier 
data, but the windows applied are only as wide as the actual data and therefore are shorter, 
resulting in a slightly wider main lobe than the XW case. The IW case yields the widest 
main lobe because less Fourier data are used and the windows are shorter. The second 
significant result is that while the PSL in the IW, WX, and CBP cases are nearly equal, 
the peak sidelobe in the XW case is considerably larger. This is due to the discontinuities 
in each of the lower corners of the Fourier domain patch. The quantitative values for these 
IPR’s are given in Table 1. All these significant results should become more prominent as 
0, is increased. 

Figures 12(a) and 12(b) show IPR’s from the center and upper left targets, respectively, 
generated using the “D” image parameters. The differences described in the preceding para- 
graph remain consistent for this case also, although they are more significant, as expected. To 
summarize, XW shows the narrowest main lobe but the largest PSL, IW exhibits the widest 
main lobe, and WX and CBP are again overlapping in the main lobe and only slightly differ- 
ent in PSL’s. The differences are more pronounced in this case because the angle subtended 
is now 28, = 8”. Inscribing a rectangle discards a large amount of data, thus reducing the 
bandwidth considerably. Exscribing followed by windowing results in a large discontinuity in 
the lower corners oriented at angles k8, with respect to a vertical axis. It should be obvious 
that as the angle subtended is increased, this effect is accentuated even more. Quantitative 
values for the “D” image targets are shown in Table 4. 

Although we have examined IPR’s from only two targets from the “A” and “D” image 
data sets, these are representative of the entire data set. We have neglected to show range 
IPR’s because there was no significant difference between any of the images, regardless of 
the formation technique or SAR parameters. 

Based on the preceding results, we conclude that the mathematical identity given in Eq. 
(8) is maintained in the case of SAR image formation. In retrospect, we should not expect the 
IW and XW images to produce the same images as WX and CBP for the simple reason that 
different steps are taken to obtain the final image. Conversely, if the same steps are followed, 
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Figure 11: “A” image (a) Center target IPR’s. (b) Upper left target IPR’s. Solid=IW, 
dash=XW, dot=WX, dot/dash=CBP. 
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Figure 12: “D” image (a) Center target IPR’s. (b) Upper left target IPR’s. Solid=IW, 
dash=XW, dot=WX, dot/dash=CBP. 
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Table 1: IPR Measurements for “A” Image Data n IW I xw I wx I CBP 1 

Table 2: IPR Measurements for “B” Image Data 

Center Target 
J IW I xw I wx I CBP 

-3dB 1.8500 1.8011 1.8189 1.8081 
-18dB 4.1350 4.0067 4.0640 4.0450 

PSL -40.0988 -37.3462 -39.6283 -40.2694 
Upper Left Target 

-3dB 1.8365 1.7893 1.8047 1.8081 
-18dB 4.1088 3.9816 4.0356 4.0435 

PSL -38.2566 -35.8288 -37.7706 -40.2873 

Table 3: IPR Measurements for “C” Image Data 
0 IW I xw I wx I CBP 1 

Upper Left Target 
-3dB 1.9342 1.8348 1.8652 1.8780 

-18dB 4.3305 4.0682 4.1768 4.2004 
PSL -38.3770 -34.3389 -37.7368 -40.0441 
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Table 4: IPR Measurements for “D” Image Data 
n I IW I xw I wx I CBP 1 
J I I I I L 

Center Target 
-3dB 1.9145 1.7205 1.7886 1.7848 

-18dB 4.2874 3.7863 3.9989 3.9954 
PSL -40.0168 -32.7780 -39.6069 -40.1483 

Upper Left Target 
-3dB 1.9111 1.7157 1.7790 1.8000 

-18dB 4.2750 3.7799 3.9860 4.0127 
PSL -38.8986 -32.1347 -38.2308 -39.5324 

2 

i.e. window followed by inverse Fourier transform (either by CBP or interpc&ion/IFFT), 
then we should expect, based on Eq. (8), that the resultant images would be nearly identical. 
The only artifactual differences between the WX and CBP methods are due to numerical 
implementation error, which are likely manifested in varying sidelobe levels because these 
differences are extremely small. 

Another visual illustration of the above conclusion is shown in Fig. 13, where two phase 
history domain images from the “D” parameter set are offered. The phase history domain 
image is obtained from the spatial domain image via a 2D Fourier transform. Phase history 
is a term used to specify the actual Fourier domain data collected by the SAR. Figure 13(a) 
shows the 2D Fourier transform (via FFT) of the WX image (Fig. lO(c)), while Fig. 13(b) 
displays the 2D Fourier transform (via FFT) of the CBP image (Fig. 10(d)) . One can 
see that the Fourier data used to form the CBP image (Fig. 13(b)) does in fact resemble 
that which was obtained by first windowing and then interpolating to an exscribed rectangle 
(Fig. 13(a)). Note the angle of the edges in each phase history domain image corresponds 
to 0, = 4.0” with respect to a vertical axis. 

5.2 One Dimensional Interpolation of Filtered Projections 
In this section we revisit the issue of how to compute qe(t) if t # nSt for any value of n. This 
topic was briefly addressed in [lo] for nearest neighbor interpolation. We find that linear 
interpolation can be used but only if St << 1. To show the importance of this restriction, we 
present several examples, each using linear interpolation and having a different value for &. 
For the “D” parameter set, the SAR collects 381 pulses and samples each pulse 332 times 
per second (N, = 332). To obtain the filtered projection function q ~ ( t )  given in Eq. (16), 

I 

I 

we perform the multiplication specified, zero pad the sequence to a length M, and finish 
with a length M inverse FFT to obtain samples of qe( t )  at points separated by St given in 
Eq. (19). Normally, one would chose M = 512 if N, = 332,, which gives St = 0.194531. If 
we form a CBP image using M = 512, and then extract from the image the center row, 
which contains the center and left targets, and plot the magnitude (normalized with respect 
to the maximum value), we obtain the plot shown in Fig. 14. If we let M = 1024 then 
St = 0.097266 and the same row extracted from the new image is shown in Fig. 15. Plots 
in Figs. 16 and 17 result from M = 2048,St = 0.048633 and M = 4O96,St = 0.024316, 
respectively. 

~ 

~ 
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Figure 13: Phase history domain images from “D” parameters. (a) WX. (b) CBP. 
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Figure 14: Center row from CBP “D” image, N, = 332, A4 = 512. 
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Figure 15: Center row from CBP “D” image, N, = 332, A4 = 1024. 
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Figure 16: Center row from CBP “D” image, N, = 332, M = 2048. 
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Figure 17: Center row from CBP “D” image, N, = 332, M = 4096. 
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All plots in Figs. 14 through 17 use the same scale to simplify comparison. Two very 
important observations can be made from these plots. First, for the left target, one can see 
that linear interpolation is inadequate for the larger values of St because additional targets 
have begun to appear. These additional targets were first termed “false targets” in [ll], but 
to our knowledge, the false targets were not mentioned again in any literature concerning 
CBP and SAR, nor was an explanation given for their existence. The second important 
observation from these plots is that the center target has not generated any false targets. 
Our results have shown that for  a specific angle e,, as targets move further from the cross- 
range center, larger false targets are generated and the false target distance from the true 
target increases. Furthermore, as the angle 8, becomes smaller, either b y  increasing fc and 
decreasing 8, to  maintain resolution, or by  decreasing 8, to  reduce resolution, then the 
eflects shown an Figs. 14 through 1’7 become less severe. 

To show this effect more dramatically, refer to the images in Fig. 18. We have strategically 
placed targets in the ground patch so that the predominant position variation is either range 
or azimuth. The images in (a) and (b) were formed using the “D” image parameters, so the 
angle subtended by the radar is 20, = 8”. The only difference between these two images is 
that Fig. 18(a) used M = 512 and Fig. 18(b) used M = 4096. Note in Fig. 18(a) that as 
a target’s azimuth position is increased from zero, the false targets become larger and more 
spread out. Note also that multiple false targets actually occur, but false targets further 
from the true target reduce in amplitude. Multiple false targets can also be seen in the 
one dimensional plots in Figs. 14 through 16. Finally, one can see in Fig. 18(b) that zero 
padding to a longer length removes these effects. It should be pointed out that the act of 
zero-padding to longer lengths essentially implements 1D sinc() interpolation! 

While we can not offer theoretical guidelines for using linear interpolation, the conditions 
outlined in the previous paragraph, under which linear interpolation is not acceptable, do 
have a common thread. Referring to Fig. 19, we see that a point target at location (z1,O) 
gives a projection function 

qs ( t )  = q t  - t l )  (25) 
where tl = 2 1  cos(8) and S() is the unit sample function. If f - 8, < 0 < f + Om,  then 
the range of tl is -xl sin(@,) < tl < z1 sin(8,). Thus, as z1 becomes larger, the range of 
values tl takes on also becomes larger as 8 progresses through it’s range. Similarly, as 8, is 
increased, the range of tl also increases for z1 constant. It is apparently the large range of 
values of t l ,  coupled with backprojecting a complex exponential (see Eq. (20)) onto a finite 
grid that produces the false targets. The reason this effect was neither noted nor shown in 
[2] is most likely because their simulations used 28,=0.1875”. 

It is instructive to compare linear interpolation with nearest neighbor interpolation to 
determine if the simpler interpolation scheme is adequate with the smaller value of St. This 
comparison is shown in Fig. 20, where the center row from an image formed using nearest 
neighbor interpolation (solid graph) is compared with the same row using linear interpolation 
(dashed graph), with M = 4096, St = 0.024316. One can see that linear interpolation reduces 
the noise floor by approximately 30dB or more. It is recommended that the additional 
computations for linear interpolation be used to achieve this advantage. 
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Figure 18: CBP-formed images (a) “D” image with A4 = 512. (b) “D” image with M = 4096. 
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Figure 19: Projection function for image with single impulse. 

6 Massively Parallel Implementations 
From a conceptual standpoint, the CBP algorithim is straightforward to parallelize. This was 
mentioned in [2] as an advantage of the CBP algorithm over the 2DFFT method. However, 
from an implementation point of view, there are practical constraints that limit the perfor- 
mance of CBP when running on a parallel machine. Thus, the computation time required to 
form an image using CBP is significantly longer than with the 2DFFT method, while offering 
no real simplification in the ease of parallelization. The parallel program described herein 
was designed for execution on a 1024-node nCUBE 2. Its execution times will be compared 
to that of the 2DFFT algorithm on the same machine. While tests of CBP were not run on 
the Connection Machine CM-2 and Cray Y-MP, references will be made to implementation 
issues on those architectures as well. 

The convolution and backprojection portions of CBP are inherently independent and are 
treated as two discrete phases in the parallel algorithm. The convolution portion of CBP 
is done in three steps. First, the complex phase history data are distributed as evenly as 
possible among the computer’s p processors. The phase history pusles are distributed to 
the processors along with their respective angle 8, as measured with respect to the positive 
abscissa axis. When the total number of pulses, Np, is divided envenly by the number 
of processors, p, then Np/p pulses are given to each node. If the division results in a 
remainder of T pulses, then the first T processors will receive an additional pulse to process. 
The data are read from either a single disk or a disk array, with the data having been 
previously striped across the disks. As with the 2DFFT method, disk transfer times are 
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Figure 20: Center row from CBP “D” image, N, = 332, M = 4096. Solid line=nearest 
neighbor interpolation; dashed line=linear interpolation. 

not included in the performance measurements. In the second step of convolution, the 
filtered projection for each pulse is obtained by performing the multiplication method of Eq. 
(16), and then zero padding the projection to a length of M ,  where 2M 2 N,. Finally, an 
inverse FFT of length M is performed on each projection to obtain samples of qe(t) at points 
separated by &, as defined by Eq. (19). The entire convolution process is performed with 
an asymptotic computational complexity of O ( M  log, M ) .  With the exception of the initial 
data distribution, which is ignored in this analysis, there is no interproccessor communication 
required for the convolution phase of CBP. 

Having calculated the filtered projections qe(t) for each of the pulses, the backprojection 
phase begins. At this point, each processor node has the neccessary data for generating its 
projections’ contributions to the overall formed image. In practice, the size of the formed 
image is variable, resulting in different pixel spacing in the spatial domain, as described in 
Section 4.1. For this discussion, assume the formed image is to have I image pixels in both 
the range and azimuth directions. At first glance, it seems reasonable to have each node 
to generate its contribution to the overall formed image, based on the filtered projections it 
contains. After completion, each node would contain a spacial domain contribution to the 
image of size 12, and the final image would be formed by integrating the contributions of 
all the nodes. There are several practical limitations that make this approach undesirable. 
First of all, very few parallel computers have enough memory in their individual nodes to 
hold a backprojected image of significant size. An image size40f 512 x 512, where I = 5122 = 
262,144, is already too large for an nCUBE 2’s node memory when dealing with eight byte 
complex numbers. In practice, images can exceed 14,000 x 14,000 pixels. Second, even 
if there is sufficient memory available, it is a formidable task in terms of interproccessor 
communication to integrate the contributions of 1024 nodes, when each contribution is 12. 
In a vector machine with a large shared memory, such as the Cray YMP or Connenction 
Machine CM-2, the integration can be performed without interprocessor communication, but 
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memory limitations would require repetitive swapping to and from disk of image portions 
during calculation. 

To work more efficiently within the memory constraints of the parallel computer, consider 
the following method of parallel backprojection. Instead of having each processor compute its 
contribution to the overall space domain image, restrict the processor nodes to computing 
only a portion of the formed image. For an image size of 12, where I is a power of 2, 
let the first processor compute the first I / p  rows of the image, the second processor the 
next I / p  rows, etc. After each processor, in parallel, has integrated the contributions of 
its filtered projections, they pass their filtered projections to another processor, and receive 
those of another. This process continues until all nodes have received pulses from every other 
processor, and have backprojected and integrated the contributions into their portion of the 
final image. This method minimizes the amount of memory required and results in a portion 
of the final image residing in each node, allowing for easy storage onto the disk or disk array. 
However, this method has the disadvantage of requiring O(p2) communication steps, unless 
parallelism in communication is exploited. 

To minimize communication steps within the nCUBE 2, the nodes are configured as an 
end-connected ring. After a node backprojects the filtered projections it contains, it sends 
them to the next higher processor, as numbered using a Gray coded ordering scheme. It then 
receives another set of filtered projections from its next lower node, as based on the Gray 
coding scheme. The backprojection is then performed on the new filtered projections within 
the node. In this way, all processors communicate with a hard-wired nearest neighbor, and 
the entire ring-shift of data occurs within one communication step, since all nearest neighbor 
communication takes place simultaneously. By the end of only O(p) communication steps, 
all filtered projections have been seen by all processor nodes. Each processor requires O ( I )  
calcuations to backproject each filtered projection, resulting in an overall complexity of 
O ( N . ) ,  when the input phase history is similar in size to the formed space domain image. 
The communication time required to shift the filtered projections one position in the ring is 
a linear function of the length of the filtered projection, namely M .  When significant zero 
padding of the input pulse is required, M increases and communication time suffers. This 
is a potential disadvantage of CPB over the 2DFFT method, since 2DFFT doesn’t require 
padding beyond rounding to the next higher power of 2. 

Regardless of the parallel method used to implement the CBP algorithm, it’s likely to be 
less efficient that the 2DFFT method. This is due to CBP’s ’expansion’ of data, whereby a 
smaller filtered projection is backprojected onto a larger space domain image. This results 
in an increased amount of communication, since the space domain contributions within the 
nodes must be integrated into a single formed image through a data gathering operation. 
When a node does not backproject over the entire space domain, but instead, is responsible 
for the formation of a portion of the image, memory is conserved. However, the node must 
have access to all filtered projections within all other nodes. Either way, a considerable 
amount of interprocessor communication is required. While the CBP method requires O(p) 
communication steps, the bulk of communication in the 2DFFT method is due to the matrix 
transposition, which takes only O(Zog2p) steps. 

Table 5 contains actual running times for the CBP and 2DFFT algorithms on a 1024 node 
nCUBE 2. The running time of both algorithms increases proportionally with the square 
of the input data size. However, due to  the data expansion in the CBP algorithm and the 
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Table 5: Running Time (sec) for CBP and 2DFFT on a 1024 Node nCUBE2 
1 Ph. Hist. Size 11 CBP 11 2DFFT 

1024 x 1024 
2048 x 2048 

associated increase in communication cost, the constant multiplier for the CBP algorithm is 
higher. Data transfers to and from disk were not considered in these timings. 

7 Conclusions 
It should be evident that resolution and, therefore image quality, is dependent on the size 
of the Fourier data patch obtained during aperture synthesis, and not so dependent on the 
image formation technique used. In the case of inscribing a rectangle in the polar annulus, 
Fourier data is discarded, which reduces the achievable resolution. When the polar data is 
interpolated to an exscribed rectangle followed by windowing, the tapered window extends 
to the edges of the rectangular region, leaving a sizable discontinuity beginning in the upper 
corners, oriented at  an angle corresponding to the collection geometry. While the main lobes 
of point targets are narrower, the sidelobes are much larger because of the discontinuity. 
This results in a poorer quality image. 

If the entire Fourier data are windowed, followed by 2D Fourier inversion without dis- 
carding any data, then mathematics and experimental results show that regardless of the 
Fourier inversion technique, the image quality will be identical, save for insignificant nu- 
merical artifacts. This was the case for convolution backprojection and interpolating to an 
exscribed rectangle followed by 2D IFFT. The two methods appear to offer the best results 
in terms of the tradeoff between narrower mainlobe and very low sidelobes. However, some 
may argue that the more complex sidelobe structure detracts from the appearance of the 
image. For broadside mode collection, inscribing a rectangle generates sidelobes in only 4 
directions, but the other methods force the user to contend with sidelobes in 6 directions. 

Note that if the polar data is first interpolated to an exscribed rectangle, and then a 
progressively tapered window is applied so that the ends of the window correspond to the 
discontinuity, then results similar to CBP and WX are obtained. In this case, however, 
applying the window is much more complicated than in any of the other cases because the 
window length for each row must be computed and a new window generated. 

The CBP algorithm is straightforward to parallelize. However, several practical con- 
straints limit the efficiency of the computations. The zero padding of pulses during the 
convolution phase results in longer messages, thereby increasing communication time. Fur- 
thermore, an expansion of data results from the backprojection of individual filtered pro- 
jections onto a larger space domain. This drives up memory requirements and results in 
increased communication overhead, since each node’s contribution to the space domain im- 
age must be globally integrated. Alternatively, each node can be made responsible for the 
formation of a portion of the final image. This reduces memory requirements and eliminates 
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the global gathering operation. Unfortunately, this approach requires each node to have 
access to all other nodes’ projections, thereby increasing communication time. The CBP 
algorithm does allow for the variable scaling of the formed image, which isn’t a feature of 
the 2DFFT. However, the computation times of the CBP method are significantly longer 
than those of the CBP method, and as the size of the input data set increases, the CBP 
method falls farther behind the 2DFFT in efficiency. 
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