68 research outputs found

    Automatic generation of real-time deformable parametric model of the aorta for a VR-based catheterism guidance system

    Full text link
    The purpose of this work is twofold: first, to develop a process to automatically create parametric models of the aorta that can adapt to any possible intraoperative deformation of the vessel. Second, it intends to provide the tools needed to perform this deformation in real time, by means of a non-rigid registration method. This dynamically deformable model will later be used in a VR-based surgery guidance system for aortic catheterism procedures, showing the vessel changes in real time

    Rich Collection of n-Propylamine and Isopropylamine Conformers: Rotational Fingerprints and State-of-the-Art Quantum Chemical Investigation

    Get PDF
    The conformational isomerism of isopropylamine and n-propylamine has been investigated by means of an integrated strategy combining high-level quantum-chemical calculations and high-resolution rotational spectroscopy. The equilibrium structures (and thus equilibrium rotational constants) as well as relative energies of all conformers have been computed using the so-called "cheap" composite scheme, which combines the coupled-cluster methodology with second-order Møller-Plesset perturbation theory for extrapolation to the complete basis set. Methods rooted in the density functional theory have been instead employed for computing spectroscopic parameters and for accounting for vibrational effects. Guided by quantum-chemical predictions, the rotational spectra of isopropylamine and n-propylamine have been investigated between 2 and 400 GHz with Fourier transform microwave and frequency-modulation millimeter/submillimeter spectrometers. Spectral assignments confirmed the presence of several conformers with comparable stability and pointed out possible Coriolis resonance effects between some of them

    A Journey from Thermally Tunable Synthesis to Spectroscopy of Phenylmethanimine in Gas Phase and Solution

    Get PDF
    Phenylmethanimine is an aromatic imine with a twofold relevance in chemistry: organic synthesis and astrochemistry. To tackle both aspects, a multidisciplinary strategy has been exploited and a new, easily accessible synthetic approach to generate stable imine-intermediates in the gas phase and in solution has been introduced. The combination of this formation pathway, based on the thermal decomposition of hydrobenzamide, with a state-of-the-art computational characterization of phenylmethanimine laid the foundation for its first laboratory observation by means of rotational electric resonance spectroscopy. Both E and Z isomers have been accurately characterized, thus providing a reliable basis to guide future astronomical observations. A further characterization has been carried out by nuclear magnetic resonance spectroscopy, showing the feasibility of this synthetic approach in solution. The temperature dependence as well as possible mechanisms of the thermolysis process have been examined

    MicroRNA-124 Regulates STAT3 Expression and Is Down-regulated in Colon Tissues of Pediatric Patients With Ulcerative Colitis

    Get PDF
    Background & Aims - Altered levels and functions of microRNAs (miRs) have been associated with inflammatory bowel diseases (IBDs), although little is known about their roles in pediatric IBD. We investigated whether colonic mucosal miRs are altered in children with ulcerative colitis (UC). Methods - We used a library of 316 miRs to identify those that regulate phosphorylation of STAT3 in NCM460 human colonocytes incubated with interleukin-6. Levels of miR-124 were measured by real-time PCR analysis of colon biopsies from pediatric and adult patients with UC and patients without IBD (controls), and of HCT-116 colonocytes incubated with 5-aza-2’-deoxycytidine. Methylation of the MIR124 promoter was measured by quantitative methylation-specific PCR. Results - Levels of phosphorylated STAT3 and the genes it regulates (encoding VEGF, BCL2, BCLXL, and MMP9) were increased in pediatric patients with UC, compared to control tissues. Overexpression of miR-124, let-7, miR-125, miR-26, or miR-101 reduced STAT3 phosphorylation by ≥75% in NCM460 cells; miR-124 had the greatest effect. miR-124 was downregulated specifically in colon tissues from pediatric patients with UC and directly targeted STAT3 mRNA. Levels of miR-124 were decreased whereas levels of STAT3 phosphorylation increased in colon tissues from pediatric patients with active UC, compared to those with inactive disease. Furthermore, levels of miR-124 and STAT3 were inversely correlated in mice with experimental colitis. Downregulation of miR-124 in tissues from children with UC was attributed to hypermethylation of its promoter region. Incubation of HCT-116 colonocytes with 5-aza-2’ deoxycytidine upregulated miR-124 and reduced levels of STAT3 mRNA. Conclusions - MiR-124 appears to regulate the expression of STAT3. Reduced levels of miR-124 in colon tissues of children with active UC appear to increase expression and activity of STAT3, which could promote inflammation and pathogenesis of UC in children

    A Journey from Thermally Tunable Synthesis to Spectroscopy of Phenylmethanimine in Gas Phase and Solution

    Get PDF
    Phenylmethanimine is an aromatic imine with a twofold relevance in chemistry: organic synthesis and astrochemistry. To tackle both aspects, a multidisciplinary strategy has been exploited and a new, easily accessible synthetic approach to generate stable imine-intermediates in the gas phase and in solution has been introduced. The combination of this formation pathway, based on the thermal decomposition of hydrobenzamide, with a state-of-the-art computational characterization of phenylmethanimine laid the foundation for its first laboratory observation by means of rotational electric resonance spectroscopy. Both E and Z isomers have been accurately characterized, thus providing a reliable basis to guide future astronomical observations. A further characterization has been carried out by nuclear magnetic resonance spectroscopy, showing the feasibility of this synthetic approach in solution. The temperature dependence as well as possible mechanisms of the thermolysis process have been examined. © 2020 The Authors. Published by Wiley-VCH Gmb

    Microperimetric evaluation and predictive factors of visual recovery after successful inverted internal limiting membrane-flap technique for macular hole in high myopic eyes

    Get PDF
    IntroductionInverted Internal Limiting Membrane (ILM)-flap technique demonstrated its effectiveness, in terms of anatomical closure rate and visual acuity recovery for high myopic macular holes. We evaluated macular function after a successful inverted ILM-flap for macular holes in high myopic eyes (hMMH) using microperimetry to predict visual prognosis.MethodsA retrospective study on 23 eyes of 23 patients after surgical closure of hMMH, was performed. All patients underwent inverted ILM-flap and gas tamponade. Cataract surgery was performed in phakic eyes. Study outcomes including best-corrected visual acuity (BCVA), retinal sensitivity (RS) at central 12°, central retinal sensitivity (CRS) at central 4° and mean deviation (MD), and fixation behavior as bivariate contour ellipse area (BCEA, degrees2) measured by microperimetry, were evaluated over 6 months. A mixed-effects model was used to evaluate and compare the repeated measurements of outcomes between phakic and pseudophakic eyes. A regression model was performed to assess the relationship between BCVA at 6 months and independent variables.ResultsOverall mean BCVA improved from 0.98 ± 0.21 logMAR at baseline to 0.47 ± 0.31 logMAR at the last follow-up (p < 0.001). Over 6 months, overall sensitivity measurements improved (RS, p = 0.001; CRS, p < 0.0001; MD, p = 0.03), and the BCEA decreased in dimension, although not significantly (p ≥ 0.05). The mixed model revealed a significantly better effect of inverted ILM-flap combined with cataract surgery on BCVA and CRS in phakic eyes than inverted ILM-flap alone in pseudophakic ones. The regression model revealed a relationship of 6-month BCVA with pre-operative BCVA (β = 0.60, p = 0.02) and RS (β = −0.03, p = 0.01).ConclusionThe inverted ILM-flap technique significantly improved visual acuity and retinal sensitivity after the hMMH closure, particularly when combined with cataract extraction. Pre-operative visual acuity and retinal sensitivity at central 12° may predict post-surgical visual acuity
    corecore