23 research outputs found

    Flux-loss of buoyant ropes interacting with convective flows

    Get PDF
    We present 3-d numerical magneto-hydrodynamic simulations of a buoyant, twisted magnetic flux rope embedded in a stratified, solar-like model convection zone. The flux rope is given an initial twist such that it neither kinks nor fragments during its ascent. Moreover, its magnetic energy content with respect to convection is chosen so that the flux rope retains its basic geometry while being deflected from a purely vertical ascent by convective flows. The simulations show that magnetic flux is advected away from the core of the flux rope as it interacts with the convection. The results thus support the idea that the amount of toroidal flux stored at or near the bottom of the solar convection zone may currently be underestimated.Comment: 5 pages, 3 figures. Accepted for publication in Astronomy & Astrophysic

    An Ab Initio Approach to the Solar Coronal Heating Problem

    Full text link
    We present an ab initio approach to the solar coronal heating problem by modelling a small part of the solar corona in a computational box using a 3D MHD code including realistic physics. The observed solar granular velocity pattern and its amplitude and vorticity power spectra, as reproduced by a weighted Voronoi tessellation method, are used as a boundary condition that generates a Poynting flux in the presence of a magnetic field. The initial magnetic field is a potential extrapolation of a SOHO/MDI high resolution magnetogram, and a standard stratified atmosphere is used as a thermal initial condition. Except for the chromospheric temperature structure, which is kept fixed, the initial conditions are quickly forgotten because the included Spitzer conductivity and radiative cooling function have typical timescales much shorter than the time span of the simulation. After a short initial start up period, the magnetic field is able to dissipate 3-4 10^6 ergs cm^{-2} s^{-1} in a highly intermittent corona, maintaining an average temperature of ∼106\sim 10^6 K, at coronal density values for which emulated images of the Transition Region And Coronal Explorer(TRACE) 171 and 195 pass bands reproduce observed photon count rates.Comment: 12 pages, 14 figures. Submitted to Ap

    The Three-dimensional Evolution of Rising, Twisted Magnetic Flux Tubes in a Gravitationally Stratified Model Convection Zone

    Get PDF
    We present three-dimensional numerical simulations of the rise and fragmentation of twisted, initially horizontal magnetic flux tubes which evolve into emerging Omega-loops. The flux tubes rise buoyantly through an adiabatically stratified plasma that represents the solar convection zone. The MHD equations are solved in the anelastic approximation, and the results are compared with studies of flux tube fragmentation in two dimensions. We find that if the initial amount of field line twist is below a critical value, the degree of fragmentation at the apex of a rising Omega-loop depends on its three-dimensional geometry: the greater the apex curvature of a given Omega-loop, the lesser the degree of fragmentation of the loop as it approaches the photosphere. Thus, the amount of initial twist necessary for the loop to retain its cohesion can be reduced substantially from the two-dimensional limit. The simulations also suggest that as a fragmented flux tube emerges through a relatively quiet portion of the solar disk, extended crescent-shaped magnetic features of opposite polarity should form and steadily recede from one another. These features eventually coalesce after the fragmented portion of the Omega-loop emerges through the photosphere.Comment: 17 pages, 17 figures, uses AAS LaTeX macros v5.0. ApJ, in pres

    THE ASTROPHYSICAL JOURNAL, 564 508524, 2002 January 1

    No full text
    We have modeled numerically the propagation of waves through magnetic structures in a stratied atmosphere. We rst simulate the propagation of waves through a number of simple, exemplary eld geometries in order to obtain a better insight into the e+ect of di+ering eld structures on the wave speeds, amplitudes, polarizations, direction of propagation, etc., with a view to understanding the wide variety of wavelike and oscillatory processes observed in the solar atmosphere. As a particular example, we then apply the method to oscillations in the chromospheric network and internetwork. We nd that in regions where the eld is signicantly inclined to the vertical, refraction by the rapidly increasing phase speed of the fast modes results in total internal reection of the waves at a surface whose altitude is highly variable. We conjecture a relationship between this phenomenon and the observed spatiotemporal intermittancy of the oscillations. By contrast, in regions where the eld is close to vertical, the waves continue to propagate upward, channeled along the eld lines but otherwise largely una+ected by the eld

    Taking research to members of the public

    Get PDF
    In 2006, with funding from the Engineering and Physical Sciences Research Council (£30k), we built a themed exhibit with the Sensation Science Centre in Dundee. In the main part of the exhibit, which was kitted out as a ‘police station’, a visitor would see a video of a man pretending to commit a crime and construct a composite of his face using a simplified version of our EvoFIT facial-composite system. Visitors were asked, using written and spoken prompts, to select faces from an array of alternatives, with selected items being ‘bred’ together, to allow a composite to be ‘evolved’. The exhibit then presented a picture of the man’s face alongside the evolved composite, example composites created by previous visitors and an average (‘morphed’) composite from the last four visitors. The exhibit took about five minutes for a user to complete and was accompanied by a ‘Research Lab’, a station which explained more of the underlying science: themes around evolution, computer-based generation of faces, forensic use of composites, etc. We expected the exhibit to last five years but, partly due to the robustness of the hardware, it remains today and is still popular
    corecore