8 research outputs found

    c-Myc Metabolic Addiction in Cancers Counteracted by Resveratrol and NQO2

    Get PDF
    Transcription factor c-myc is frequently amplified/overexpressed in human cancers. One event c-myc controls is metabolic reprogramming or the addiction for glucose and/or glutamine as nutrients. Rewiring of metabolic circuitry provides cancer cells with a gain-of-survival advantage. Accordingly, the aversion of two types of oncogenic-distinct metabolic addictions via c-myc control offers an anti-tumorigenic approach. Resveratrol reportedly inhibits the uptake/transport of glucose or glutamine and reduces c-myc expression in cancer cells. Whether c-myc control by resveratrol involves quinone reductase NQO2 is unknown. NQO2 expressing (shRNA08) and knockdown (shRNA25) CWR22Rv1 prostate cancer cells were generated and used to study the role of NQO2 in growth and cell cycle control. Immunoblot analyses were used to evaluate the changes of cell cycle-associated proteins. NQO2 in mediating degradation of cyclin D1 via AKT/GSK-3β by resveratrol was tested by determining AKT and chymotrypsin-like proteasome activities. Molecular modeling and pull-down/deletion assays were used to evaluate the interaction between NQO2 and AKT. Resveratrol interacts with NQO2, a quinone reductase that plays a key role in resveratrol-induced AKT/GSK3β-mediated degradation of cyclin D1. In this chapter, we unravel control of expression and stability of c-myc by the resveratrol-NQO2 axis as an approach to overcome c-myc-mediated metabolic reprogramming

    Application of Open-Access Databases to Determine Functional Connectivity Between Resveratrol-Binding Protein QR2 and Colorectal Carcinoma

    Get PDF
    Colorectal cancer (CRC) is a major cause of cancer-associated deaths worldwide. Recently, oral administration of resveratrol (trans-3,5,4\u27-trihydroxystilbene) has been reported to significantly reduce tumor proliferation in colorectal cancer patients, however, with little specific information on functional connections. The pathogenesis and development of colorectal cancer is a multistep process that can be categorized using three phenotypic pathways, respectively, chromosome instability (CIN), microsatellite instability (MSI), and CpG island methylator (CIMP). Targets of resveratrol, including a high-affinity binding protein, quinone reductase 2 (QR2), have been identified with little information on disease association. We hypothesize that the relationship between resveratrol and different CRC etiologies might be gleaned using publicly available databases. A web-based microarray gene expression data-mining platform, Oncomine, was selected and used to determine whether QR2 may serve as a mechanistic and functional biotarget within the various CRC etiologies. We found that QR2 messenger RNA (mRNA) is overexpressed in CRC characterized by CIN, particularly in cells showing a positive KRAS (Kirsten rat sarcoma viral oncogene homolog) mutation, as well as by the MSI but not the CIMP phenotype. Mining of Oncomine revealed an excellent correlation between QR2 mRNA expression and certain CRC etiologies. Two resveratrol-associated genes, adenomatous polyposis coli (APC) and TP53, found in CRC were further mined, using cBio portal and Colorectal Cancer Atlas which predicted a mechanistic link to exist between resveratrol→QR2/TP53→CIN. Multiple web-based data mining can provide valuable insights which may lead to hypotheses serving to guide clinical trials and design of therapies for enhanced disease prognosis and patient survival. This approach resembles a BioGPS, a capability for mining web-based databases that can elucidate the potential links between compounds to provide correlations of these interactions with specific diseases

    Functional/Activity Network (FAN) Analysis of Gene-Phenotype Connectivity Liaised by Grape Polyphenol Resveratrol

    Get PDF
    Resveratrol is a polyphenol that has witnessed an unprecedented yearly growth in PubMed citations since the late 1990s. Based on the diversity of cellular processes and diseases resveratrol reportedly affects and benefits, it is likely that the interest in resveratrol will continue, although uncertainty regarding its mechanism in different biological systems remains.We hypothesize that insights on disease-modulatory activities of resveratrol might be gleaned by systematically dissecting the publicly available published data on chemicals and drugs. In this study, we tested our hypothesis by querying DTome (Drug-Target Interactome), a web-based tool containing data compiled from open-source databases including DrugBank, PharmGSK, and Protein Interaction Network Analysis (PINA). Four direct protein targets (DPT) and 219 DPT-associated genes were identified for resveratrol. The DPT-associated genes were scrutinized by WebGestalt (WEB-based Gene SeT Analysis Toolkit). This enrichment analysis resulted in 10 identified KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways. Refined analysis of KEGG pathways showed that 2 - one linked to p53 and a second to prostate cancer - have functional connectivity to resveratrol and its four direct protein targets. These results suggest that a functional activity network (FAN) approach may be considered as a new paradigm for guiding future studies of resveratrol. FAN analysis resembles a BioGPS, with capability for mapping a Web-based scientific track that can productively and cost effectively connect resveratrol to its primary and secondary target proteins and to its biological functions

    Repositioning of Drugs Using Open-Access Data Portal DTome: A Test Case with Probenecid (Review)

    Get PDF
    The one gene-one enzyme hypothesis, first introduced by Beadle and Tatum in the 1940s and based on their genetic analysis and observation of phenotype changes in Neurospora crassa challenged by various experimental conditions, has witnessed significant advances in recent decades. Much of our understanding of the association between genes and their phenotype expression has benefited from the completion of the human genome project, and has shown continual transformation guided by the effort directed at the annotation and characterization of human genes. Similarly, the idea of one drug‑one primary disease indication that traditionally has been the benchmark for the labeling and usage of drugs has also undergone evident progressive refinements; in recent years the science and practice of pharmaceutical development has notable success in the strategy of drug repurposing. Drug repurposing is an innovative approach where, instead of de novo synthesis and discovery of new drugs with novel indications, drug candidates with the desired usage are identified by a process of re‑profiling using an open‑source database or knowledge of known or failed drugs already in existence. In the present study, the repurposing drug strategy employing open‑access data portal drug‑target interactome (DTome) is applied to the uncovering of new clinical usage for probenecid

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    BRAF Mutation in Melanoma and Dietary Polyphenols as Adjunctive Treatment Strategy

    No full text
    Melanomas are the most insidious type of skin cancers, with more than 76,000 new cases and over 9100 deaths anticipated by 2013 in the United States. Recent advances in an understanding of genetic alterations that cause mutations in the oncogenes BRAF and NRAS, have provided new leads for treatment of melanoma. A valine-to-glutamic acid substitution mutation at position 600 (V600E) in the BRAF kinase gene has been shown to occur in approximately 75% melanoma cases. This mutation results in constitutive activation of the mitogen-activated protein kinase (MAPK) pathway, thus offering a target amenable to development of novel therapies and to adjunctive or complementary management options. A number of preclinical and clinical investigations of small molecule inhibitors of BRAF show promise, e.g., Zelboraf, an FDA-approved BRAF inhibitor for the treatment of metastatic melanomas with the V600E mutation. However, drug resistance has been found to occur in some patients. Elucidating possible mechanisms behind resistance and developing therapies to bypass such are important in ensuring the success of BRAF inhibitors. BRAF is strategically positioned at the tip of a signaling cascade that transduces effects through a cadre of downstream targets. Several studies show that these proteins are negatively regulated by a variety of diet-derived polyphenols and suggest that an intervention “cocktail” comprising these components may play be considered for development as “low bioactivity-less resistance inducing” adjunctive treatment of melanoma
    corecore