3,898 research outputs found

    The New Intoxication Defense for Ohio Employers

    Get PDF
    Ohio workers\u27 compensation system has been in a state of emergency for the last two years as labor and business groups battled over a series of employee-oriented Ohio Supreme Court decisions. Labor groups hailed these decisions as the vehicle which would propel Ohio\u27s workers\u27 compensation law into the twentieth century. Conversely, business groups condemned the decisions asserting that they exposed Ohio employers to infinite liability and destroyed Ohio\u27s industrial climate. S.B. 307 has changed the face of Ohio\u27s workers\u27 compensation law by revamping the definition of injury, establishing an intentional tort fund, and creating a new intoxication defense for Ohio employers. The focus of this Note is section 4123.54(B) which sets forth the skeleton of an intoxication defense for Ohio employers by barring from compensation those injuries which are proximately caused by the employee being intoxicated or under the influence of a non-prescription controlled substance. Due to the emergent nature of S.B. 307, the Ohio Legislature failed to define many of the legal standards set forth therein. After examining the historical development of the law of workers\u27 compensation and the intoxication defenses of other jurisdictions, this Note will define the burden which befalls an Ohio employer who attempts to establish that his employee was intoxicated or under the influence of a nonprescription controlled substance when injured and that such conduct was the proximate cause of the injury. The Note will also explore the methods by which an Ohio employee can rebut his employer\u27s intoxication defense

    The New Intoxication Defense for Ohio Employers

    Get PDF
    Ohio workers\u27 compensation system has been in a state of emergency for the last two years as labor and business groups battled over a series of employee-oriented Ohio Supreme Court decisions. Labor groups hailed these decisions as the vehicle which would propel Ohio\u27s workers\u27 compensation law into the twentieth century. Conversely, business groups condemned the decisions asserting that they exposed Ohio employers to infinite liability and destroyed Ohio\u27s industrial climate. S.B. 307 has changed the face of Ohio\u27s workers\u27 compensation law by revamping the definition of injury, establishing an intentional tort fund, and creating a new intoxication defense for Ohio employers. The focus of this Note is section 4123.54(B) which sets forth the skeleton of an intoxication defense for Ohio employers by barring from compensation those injuries which are proximately caused by the employee being intoxicated or under the influence of a non-prescription controlled substance. Due to the emergent nature of S.B. 307, the Ohio Legislature failed to define many of the legal standards set forth therein. After examining the historical development of the law of workers\u27 compensation and the intoxication defenses of other jurisdictions, this Note will define the burden which befalls an Ohio employer who attempts to establish that his employee was intoxicated or under the influence of a nonprescription controlled substance when injured and that such conduct was the proximate cause of the injury. The Note will also explore the methods by which an Ohio employee can rebut his employer\u27s intoxication defense

    The effect of on/off indicator design on state confusion, preference, and response time performance, executive summary

    Get PDF
    Investigated are five designs of software-based ON/OFF indicators in a hypothetical Space Station Power System monitoring task. The hardware equivalent of the indicators used in the present study is the traditional indicator light that illuminates an ON label or an OFF label. Coding methods used to represent the active state were reverse video, color, frame, check, or reverse video with check. Display background color was also varied. Subjects made judgments concerning the state of indicators that resulted in very low error rates and high percentages of agreement across indicator designs. Response time measures for each of the five indicator designs did not differ significantly, although subjects reported that color was the best communicator. The impact of these results on indicator design is discussed

    Characterisation of long-term climate change by dimension estimates of multivariate palaeoclimatic proxy data

    No full text
    International audienceThe problem of extracting climatically relevant information from multivariate geological records is tackled by characterising the eigenvalues of the temporarily varying correlation matrix. From these eigenvalues, a quantitative measure, the linear variance decay (LVD) dimension density, is derived. The LVD dimension density is shown to serve as a suitable estimate of the fractal dimension density. Its performance is evaluated by testing it for (i) systems with independent components and for (ii) subsystems of spatially extended linearly correlated systems. The LVD dimension density is applied to characterise two geological records which contain information about climate variability during the Oligocene and Miocene. These records consist of (a) abundances of different chemical trace elements and (b) grain-size distributions obtained from sediment cores offshore the East Antarctic coast. The presented analysis provides evidence that the major climate change associated with the Oligocene-Miocene transition is reflected in significant changes of the LVD dimension density. This is interpreted as a change of the interrelationships between different trace elements in the sediment and to a change of the provenance area of the deposited sediment

    Characterisation of long-term climate change by dimension estimates of multivariate palaeoclimatic proxy data

    Get PDF
    The problem of extracting climatically relevant information from multivariate geological records is tackled by characterising the eigenvalues of the temporarily varying correlation matrix. From these eigenvalues, a quantitative measure, the linear variance decay (LVD) dimension density, is derived. The LVD dimension density is shown to serve as a suitable estimate of the fractal dimension density. Its performance is evaluated by testing it for (i) systems with independent components and for (ii) subsystems of spatially extended linearly correlated systems. The LVD dimension density is applied to characterise two geological records which contain information about climate variability during the Oligocene and Miocene. These records consist of (a) abundances of different chemical trace elements and (b) grain-size distributions obtained from sediment cores offshore the East Antarctic coast. The presented analysis provides evidence that the major climate change associated with the Oligocene-Miocene transition is reflected in significant changes of the LVD dimension density. This is interpreted as a change of the interrelationships between different trace elements in the sediment and to a change of the provenance area of the deposited sediment

    Quasiperiodic graphs: structural design, scaling and entropic properties

    Get PDF
    A novel class of graphs, here named quasiperiodic, are constructed via application of the Horizontal Visibility algorithm to the time series generated along the quasiperiodic route to chaos. We show how the hierarchy of mode-locked regions represented by the Farey tree is inherited by their associated graphs. We are able to establish, via Renormalization Group (RG) theory, the architecture of the quasiperiodic graphs produced by irrational winding numbers with pure periodic continued fraction. And finally, we demonstrate that the RG fixed-point degree distributions are recovered via optimization of a suitably defined graph entropy

    Fermi-Hubbard physics with atoms in an optical lattice

    Full text link
    The Fermi-Hubbard model is a key concept in condensed matter physics and provides crucial insights into electronic and magnetic properties of materials. Yet, the intricate nature of Fermi systems poses a barrier to answer important questions concerning d-wave superconductivity and quantum magnetism. Recently, it has become possible to experimentally realize the Fermi-Hubbard model using a fermionic quantum gas loaded into an optical lattice. In this atomic approach to the Fermi-Hubbard model the Hamiltonian is a direct result of the optical lattice potential created by interfering laser fields and short-ranged ultracold collisions. It provides a route to simulate the physics of the Hamiltonian and to address open questions and novel challenges of the underlying many-body system. This review gives an overview of the current efforts in understanding and realizing experiments with fermionic atoms in optical lattices and discusses key experiments in the metallic, band-insulating, superfluid and Mott-insulating regimes.Comment: Posted with permission from the Annual Review of of Condensed Matter Physics Volume 1 \c{opyright} 2010 by Annual Reviews, http://www.annualreviews.or

    Problems in design of stroke treatment trials

    Get PDF
    Critical evaluation of the literature was use to identify remediable flaws in the design of clinical trials of stroke treatment. Trials of dexamethasone, dextran, and glycerol were reviewed. Available studies have in common major weaknesses in case selection (failure to exclude arteriolar strokes due to hemorrhage or lacunar infarction), and failure to estimate required sample size. Problems of case selection can be avoided with computerized tomography; the sample size required to show superiority of active treatment over placebo can be estimated using standard formulas. Prognostic stratification is suggested as a method of overcoming problems of unbalanced allocation. Further studies with improved design are required to evaluate the prospects for medical limitation of cerebral infarct size. © 1982 American Heart Association, Inc

    WOODLAND POND SALAMANDER ABUNDANCE IN RELATION TO FOREST MANAGEMENT AND ENVIRONMENTAL CONDITIONS IN NORTHERN WISCONSIN

    Get PDF
    Woodland ponds are important landscape features that help sustain populations of amphibians that require this aquatic habitat for successful reproduction. Species abundance patterns often reflect site-specific differences in hydrology, physical characteristics, and surrounding vegetation. Large-scale processes such as changing land cover and environmental conditions are other potential drivers influencing amphibian populations in the Upper Midwest, but little information exists on the combined effects of these factors. We used Blue-spotted (Ambystoma laterale Hallowell) and Spotted Salamander (A. maculatum Shaw) monitoring data collected at the same woodland ponds thirteen years apart to determine if changing environmental conditions and vegetation cover in surrounding landscapes influenced salamander movement phenology and abundance. Four woodland ponds in northern Wisconsin were sampled for salamanders in April 1992-1994 and 2005-2007. While Bluespotted Salamanders were more abundant than Spotted Salamanders in all ponds, there was no change in the numbers of either species over the years. However, peak numbers of Blue-spotted Salamanders occurred 11.7 days earlier (range: 9-14 days) in the 2000s compared to the 1990s; Spotted Salamanders occurred 9.5 days earlier (range: 3 - 13 days). Air and water temperatures (April 13- 24) increased, on average, 4.8 oC and 3.7 oC, respectively, between the decades regardless of pond. There were no discernible changes in canopy openness in surrounding forests between decades that would have warmed the water sooner (i.e., more light penetration). Our finding that salamander breeding phenology can vary by roughly 10 days in Wisconsin contributes to growing evidence that amphibian populations have responded to changing climate conditions by shifting life-cycle events. Managers can use this information to adjust monitoring programs and forest management activities in the surrounding landscape to avoid vulnerable amphibian movement periods. Considering direct and indirect stressors such as changing habitat and environmental conditions simultaneously to better understand trends in space and time can help improve monitoring programs for this taxa, which is at major risk of continued declines
    • …
    corecore