60 research outputs found

    Voiceless in Medical School: Students with Physical Disabilities

    Get PDF
    Students with physical disabilities are underrepresented in medical school. Individuals with physical disabilities have largely been left out the diversity movement, which has increased access to medical education for women and minority students (Steinberg, Iezzoni, Conill, & Stineman, 2010). For students with physical disabilities who are admitted, not much is known about their experiences, thus the focus of this study was to explore the medical school experiences of individuals with physical disabilities. as the theoretical framework, the social model of disability as developed by Oliver (2009) allowed for an examination of how medical students with physical disabilities experienced the medical school environment. For this study, I utilized a qualitative approach as a guide. Seven former medical students, six males and one female, with physical disabilities were interviewed about their experiences through medical education, from their efforts to gain admission to medical school, through their didactic and clinical education and training, and ultimately to their practice as a physician. The stories of the participants created a narrative account of the subjective meaning they created. This research found that although deficit models of disability persist in society, each participant overcame their physical impairment, and societal barriers, physical and social, to complete medical school and residency programs. Each participant found success through a combination of alternative methods of acquiring knowledge and performing medical procedures, internal motivation and determination, and the support of allies. The findings demonstrate that the structural and social construction of the medical school environment is inhospitable to individuals with physical disabilities

    The Knight Anole (Anolis equestris) in Florida

    Get PDF
    In this paper, we discuss the likely modes of introduction of the Knight Anole (Anolis equestris) into and around Florida, provide data on its current geographic distribution, and summarize life history data in both its native and introduced Florida range. Our field data consist of collections made from 1992 through 2008 and locality data taken from the literature and systematic collections throughout the United States. Anolis equestris was first introduced in Miami-Dade County in 1952. The subsequent spread of this species in Florida has been both natural and assisted by human translocations to 10 additional counties, including Brevard, Broward, Collier, Highlands, Lee, Martin, Monroe, Palm Beach, Polk, and St. Lucie. Because this species is nonindigenous and known to consume a wide variety of items, including small vertebrates, it should be removed when encountered in the wild. A comprehensive study detailing its effects on the environment is needed

    The Knight Anole (Anolis equestris) in Florida

    Get PDF
    In this paper, we discuss the likely modes of introduction of the Knight Anole (Anolis equestris) into and around Florida, provide data on its current geographic distribution, and summarize life history data in both its native and introduced Florida range. Our field data consist of collections made from 1992 through 2008 and locality data taken from the literature and systematic collections throughout the United States. Anolis equestris was first introduced in Miami-Dade County in 1952. The subsequent spread of this species in Florida has been both natural and assisted by human translocations to 10 additional counties, including Brevard, Broward, Collier, Highlands, Lee, Martin, Monroe, Palm Beach, Polk, and St. Lucie. Because this species is nonindigenous and known to consume a wide variety of items, including small vertebrates, it should be removed when encountered in the wild. A comprehensive study detailing its effects on the environment is needed

    The role of interfacial lipids in stabilizing membrane protein oligomers

    Get PDF
    Oligomerization of membrane proteins in response to lipid binding has a critical role in many cell-signalling pathways1 but is often difficult to define2 or predict3. Here we report the development of a mass spectrometry platform to determine simultaneously the presence of interfacial lipids and oligomeric stability and to uncover how lipids act as key regulators of membrane-protein association. Evaluation of oligomeric strength for a dataset of 125 α-helical oligomeric membrane proteins reveals an absence of interfacial lipids in the mass spectra of 12 membrane proteins with high oligomeric stability. For the bacterial homologue of the eukaryotic biogenic transporters (LeuT4, one of the proteins with the lowest oligomeric stability), we found a precise cohort of lipids within the dimer interface. Delipidation, mutation of lipid-binding sites or expression in cardiolipin-deficient Escherichia coli abrogated dimer formation. Molecular dynamics simulation revealed that cardiolipin acts as a bidentate ligand, bridging across subunits. Subsequently, we show that for the Vibrio splendidus sugar transporter SemiSWEET5, another protein with low oligomeric stability, cardiolipin shifts the equilibrium from monomer to functional dimer. We hypothesized that lipids are essential for dimerization of the Na+/H+ antiporter NhaA from E. coli, which has the lowest oligomeric strength, but not for the substantially more stable homologous Thermus thermophilus protein NapA. We found that lipid binding is obligatory for dimerization of NhaA, whereas NapA has adapted to form an interface that is stable without lipids. Overall, by correlating interfacial strength with the presence of interfacial lipids, we provide a rationale for understanding the role of lipids in both transient and stable interactions within a range of α-helical membrane proteins, including G-protein-coupled receptors

    Phasevarions Mediate Random Switching of Gene Expression in Pathogenic Neisseria

    Get PDF
    Many host-adapted bacterial pathogens contain DNA methyltransferases (mod genes) that are subject to phase-variable expression (high-frequency reversible ON/OFF switching of gene expression). In Haemophilus influenzae, the random switching of the modA gene controls expression of a phase-variable regulon of genes (a “phasevarion”), via differential methylation of the genome in the modA ON and OFF states. Phase-variable mod genes are also present in Neisseria meningitidis and Neisseria gonorrhoeae, suggesting that phasevarions may occur in these important human pathogens. Phylogenetic studies on phase-variable mod genes associated with type III restriction modification (R-M) systems revealed that these organisms have two distinct mod genes—modA and modB. There are also distinct alleles of modA (abundant: modA11, 12, 13; minor: modA4, 15, 18) and modB (modB1, 2). These alleles differ only in their DNA recognition domain. ModA11 was only found in N. meningitidis and modA13 only in N. gonorrhoeae. The recognition site for the modA13 methyltransferase in N. gonorrhoeae strain FA1090 was identified as 5′-AGAAA-3′. Mutant strains lacking the modA11, 12 or 13 genes were made in N. meningitidis and N. gonorrhoeae and their phenotype analyzed in comparison to a corresponding mod ON wild-type strain. Microarray analysis revealed that in all three modA alleles multiple genes were either upregulated or downregulated, some of which were virulence-associated. For example, in N. meningitidis MC58 (modA11), differentially expressed genes included those encoding the candidate vaccine antigens lactoferrin binding proteins A and B. Functional studies using N. gonorrhoeae FA1090 and the clinical isolate O1G1370 confirmed that modA13 ON and OFF strains have distinct phenotypes in antimicrobial resistance, in a primary human cervical epithelial cell model of infection, and in biofilm formation. This study, in conjunction with our previous work in H. influenzae, indicates that phasevarions may be a common strategy used by host-adapted bacterial pathogens to randomly switch between “differentiated” cell types

    Antibiofilm Activity of an Exopolysaccharide from Marine Bacterium Vibrio sp. QY101

    Get PDF
    Bacterial exopolysaccharides have always been suggested to play crucial roles in the bacterial initial adhesion and the development of complex architecture in the later stages of bacterial biofilm formation. However, Escherichia coli group II capsular polysaccharide was characterized to exert broad-spectrum biofilm inhibition activity. In this study, we firstly reported that a bacterial exopolysaccharide (A101) not only inhibits biofilm formation of many bacteria but also disrupts established biofilm of some strains. A101 with an average molecular weight of up to 546 KDa, was isolated and purified from the culture supernatant of the marine bacterium Vibrio sp. QY101 by ethanol precipitation, iron-exchange chromatography and gel filtration chromatography. High performance liquid chromatography traces of the hydrolyzed polysaccharides showed that A101 is primarily consisted of galacturonic acid, glucuronic acid, rhamnose and glucosamine. A101 was demonstrated to inhibit biofilm formation by a wide range of Gram-negative and Gram-positive bacteria without antibacterial activity. Furthermore, A101 displayed a significant disruption on the established biofilm produced by Pseudomonas aeruginosa, but not by Staphylococcus aureus. Importantly, A101 increased the aminoglycosides antibiotics' capability of killing P. aeruginosa biofilm. Cell primary attachment to surfaces and intercellular aggregates assays suggested that A101 inhibited cell aggregates of both P. aeruginosa and S. aureus, while the cell-surface interactions inhibition only occurred in S. aureus, and the pre-formed cell aggregates dispersion induced by A101 only occurred in P. aeruginosa. Taken together, these data identify the antibiofilm activity of A101, which may make it potential in the design of new therapeutic strategies for bacterial biofilm-associated infections and limiting biofilm formation on medical indwelling devices. The found of A101 antibiofilm activity may also promote a new recognition about the functions of bacterial exopolysaccharides

    Vilhelm Lundstedt’s ‘Legal Machinery’ and the Demise of Juristic Practice

    Get PDF
    This article aims to contribute to the academic debate on the general crisis faced by law schools and the legal professions by discussing why juristic practice is a matter of experience rather than knowledge. Through a critical contextualisation of Vilhelm Lundstedt’s thought under processes of globalisation and transnationalism, it is argued that the demise of the jurist’s function is related to law’s scientification as brought about by the metaphysical construction of reality. The suggested roadmap will in turn reveal that the current voiding of juristic practice and its teaching is part of the crisis regarding what makes us human

    Scaling participation in payments for ecosystem services programs

    No full text
    <div><p>Payments for ecosystem services programs have become common tools but most have failed to achieve wide-ranging conservation outcomes. The capacity for scale and impact increases when PES programs are designed through the lens of the potential participants, yet this has received little attention in research or practice. Our work with small-scale marine fisheries integrates the social science of PES programs and provides a framework for designing programs that focus <i>a priori</i> on scaling. In addition to payments, desirable non-monetary program attributes and ecological feedbacks attract a wider range of potential participants into PES programs, including those who have more negative attitudes and lower trust. Designing programs that draw individuals into participating in PES programs is likely the most strategic path to reaching scale. Research should engage in new models of participatory research to understand these dynamics and to design programs that explicitly integrate a broad range of needs, values, and modes of implementation.</p></div

    Scaling participation in payments for ecosystem services programs - Fig 2

    No full text
    <p>(A) Predicted probability of approving a TURF-reserve program between the most and least desirable program, based on fisher preferences or program characteristics and outcomes. Payments have a positive effect on approval for both programs, but approval differs drastically, with the undesirable program never reaching majority (50%) approval. The effect of contract length on approval for undesirable (B) and desirable (C) programs reveals a tradeoff (highlighted in green): the probability of accepting an unfavorable 10-year contract at US$2,750 per year (probability = 0.39) in an otherwise desirable program is higher than the probability of accepting a favorable 2-year contract at the same payment level (probability = 0.26) in an otherwise undesirable program.</p
    corecore