7 research outputs found

    A Distributed Frequency Regulation Method for Multi-Area Power System Considering Optimization of Communication Structure

    No full text
    Nowadays, the influences of the communication structure on the frequency regulation performance in a multi-area power system are barely studied. In this paper, a decentralized frequency regulation method for a multi-area power system considering optimization of communication structure is presented, and the influence of the communication structure on the frequency regulation performance is studied. Firstly, the communication network model is described and the multi-area power system model considering communication structure is presented. Then, the optimization model of communication structure during a decentralized frequency regulation process is constructed. This model aims to speed up the convergence speed of the control together with ensuring the high algebraic connectivity of the communication structure. Quantum binary particle swarm optimization (QB-PSO) algorithm is introduced to solve this model and, based on this, the communication structure optimization process and frequency regulation method are proposed. The simulation results show that the proposed method could greatly improve the frequency control efficiency through the optimization of the communication structure

    Influence of Temperature, Photoperiod, and Supplementary Nutrition on the Development and Reproduction of <i>Scutellista caerulea</i> Fonscolombe (Hymenoptera: Pteromalidae)

    No full text
    Scutellista ciruela Fonscolombe has a significant controlling effect on the rubber tree pest, Parasaissetia nigra Nietner. To identify the optimal conditions for the population growth of S. caerulea, we assessed how temperature, photoperiod, and supplementary nutrition affected its development and reproduction. The results demonstrated that the number of eggs laid and parasitism rates of S. caerulea were the highest at 33 °C. The developmental rate of S. caerulea was the fastest and the number of emerged adults the highest. The number of eggs laid and the parasitism rates increased when the light duration increased within a day. Females did not lay any eggs when the whole day was dark. At a photoperiod of 14:10 (L:D), the developmental duration was the shortest and the number of emerged adults was the highest. Adult life span was the longest under a 12:12 (L:D) photoperiod. During the adult stage, supplementary nutrition, such as sucrose, fructose, honey, and glucose, increased the life span of S. caerulea. The life span of S. caerulea was longer when provided with a supplementary diet of sucrose or honey, compared to other tested diets. The results suggested that the most suitable conditions for S. caerulea’s population growth were the following: 30 to 33 °C, with 12 to 14 h of daylight, and the provision of sucrose or honey as supplemental diet for the adults

    Synthesis and Bioevaluation of 3‑(Arylmethylene)indole Derivatives: Discovery of a Novel ALK Modulator with Antiglioblastoma Activities

    No full text
    Glioblastoma is the most common brain tumor, with high recurrence and low survival rates. An integrative bioinformatics analysis demonstrated that anaplastic lymphoma kinase (ALK) is a promising therapeutic target for glioblastoma. We designed and synthesized a series of 3-(arylmethylene)indole derivatives, which were further evaluated for antiproliferative activity using glioma cell lines. Among them, compound 4a significantly inhibited the viability of glioblastoma cells. With favorable pharmacokinetic characteristics and blood–brain barrier permeability, 4a improved the survival rate and inhibited the growth of orthotopic glioblastoma. The Phospho-Totum system revealed that ALK was a potential target for the antiglioblastoma activity of 4a. Further experiments indicated that 4a might be a novel ALK modulator, which interacted with the extracellular ligand-binding domain of ALK, thus selectively induced ERK-mediated autophagy and apoptosis. Our findings provide an alternative ALK-based targeting strategy and a new drug candidate for glioblastoma therapy

    Synthesis and Bioevaluation of 3‑(Arylmethylene)indole Derivatives: Discovery of a Novel ALK Modulator with Antiglioblastoma Activities

    No full text
    Glioblastoma is the most common brain tumor, with high recurrence and low survival rates. An integrative bioinformatics analysis demonstrated that anaplastic lymphoma kinase (ALK) is a promising therapeutic target for glioblastoma. We designed and synthesized a series of 3-(arylmethylene)indole derivatives, which were further evaluated for antiproliferative activity using glioma cell lines. Among them, compound 4a significantly inhibited the viability of glioblastoma cells. With favorable pharmacokinetic characteristics and blood–brain barrier permeability, 4a improved the survival rate and inhibited the growth of orthotopic glioblastoma. The Phospho-Totum system revealed that ALK was a potential target for the antiglioblastoma activity of 4a. Further experiments indicated that 4a might be a novel ALK modulator, which interacted with the extracellular ligand-binding domain of ALK, thus selectively induced ERK-mediated autophagy and apoptosis. Our findings provide an alternative ALK-based targeting strategy and a new drug candidate for glioblastoma therapy
    corecore