115 research outputs found
Modular Cosmology, Thermal Inflation, Baryogenesis and Predictions for Particle Accelerators
Modular cosmology is plagued by overproduction of unwanted relics, gravitinos
and especially moduli, at relatively low energy scales. Thermal inflation
provides a compelling solution to this moduli problem, but invalidates most
baryogenesis scenarios. We propose a simple model in which the MSSM plus
neutrino mass term is supplemented by a minimal flaton sector to
drive the thermal inflation, and make two crucial assumptions: the flaton
vacuum expectation value generates the -term of the MSSM and . The second assumption is particularly interesting in that it
violates a well known constraint, implying that there exists a nearby deep
non-MSSM vacuum, and provides a clear signature of our model which can be
tested at future particle accelerators. We show that our model leads to thermal
inflation followed by Affleck-Dine leptogenensis along the flat
direction. A key feature of our leptogenesis scenario is that the flat
direction is also induced to temporarily acquire a large value, playing a
crucial role in the leptogenesis, as well as dynamically shielding the field
configuration from the deep non-MSSM minimum, ensuring that the fields relax
into our MSSM vacuum.Comment: v3; 19 pages, 3 figures; added a reference for section
Recommended from our members
An efficient local binary pattern based plantar pressure optical sensor image classification using convolutional neural networks
The objective of this study was to design and produce highly comfortable shoe products guided by a plantar pressure imaging data-set. Previous studies have focused on the geometric measurement on the size of the plantar, while in this research a plantar pressure optical imaging data-set based classification technology has been developed. In this paper, an improved local binary pattern (LBP) algorithm is used to extract texture-based features and recognize patterns from the data-set. A calculating model of plantar pressure imaging feature area is established subsequently. The data-set is classified by a neural network to guide the generation of various shoe-last surfaces. Firstly, the local binary mode is improved to adapt to the pressure imaging data-set, and the texture-based feature calculation is fully used to accurately generate the feature point set; hereafter, the plantar pressure imaging feature point set is then used to guide the design of last free surface forming. In the presented experiments of plantar imaging, multi-dimensional texture-based features and improved LBP features have been found by a convolution neural network (CNN), and compared with a 21-input-3-output two-layer perceptual neural network. Three feet types are investigated in the experiment, being flatfoot (F) referring to the lack of a normal arch, or arch collapse, Talipes Equinovarus (TE), being the front part of the foot is adduction, calcaneus varus, plantar flexion, or Achilles tendon contracture and Normal (N). This research has achieved an 82% accuracy rate with 10 hidden-layers CNN of rotation invariance LBP (RI-LBP) algorithm using 21 texture-based features by comparing other deep learning methods presented in the literature
Phenotypic Screening of Chemical Libraries Enriched by Molecular Docking to Multiple Targets Selected from Glioblastoma Genomic Data
Like most solid tumors, glioblastoma multiforme (GBM) harbors multiple overexpressed and mutated genes that affect several signaling pathways. Suppressing tumor growth of solid tumors like GBM without toxicity may be achieved by small molecules that selectively modulate a collection of targets across different signaling pathways, also known as selective polypharmacology. Phenotypic screening can be an effective method to uncover such compounds, but the lack of approaches to create focused libraries tailored to tumor targets has limited its impact. Here, we create rational libraries for phenotypic screening by structure-based molecular docking chemical libraries to GBM-specific targets identified using the tumor’s RNA sequence and mutation data along with cellular protein–protein interaction data. Screening this enriched library of 47 candidates led to several active compounds, including 1 (IPR-2025), which (i) inhibited cell viability of low-passage patient-derived GBM spheroids with single-digit micromolar IC50 values that are substantially better than standard-of-care temozolomide, (ii) blocked tube-formation of endothelial cells in Matrigel with submicromolar IC50 values, and (iii) had no effect on primary hematopoietic CD34+ progenitor spheroids or astrocyte cell viability. RNA sequencing provided the potential mechanism of action for 1, and mass spectrometry-based thermal proteome profiling confirmed that the compound engages multiple targets. The ability of 1 to inhibit GBM phenotypes without affecting normal cell viability suggests that our screening approach may hold promise for generating lead compounds with selective polypharmacology for the development of treatments of incurable diseases like GBM
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images
Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images
of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL
maps are derived through computational staining using a convolutional neural network trained to
classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and
correlation with overall survival. TIL map structural patterns were grouped using standard
histopathological parameters. These patterns are enriched in particular T cell subpopulations
derived from molecular measures. TIL densities and spatial structure were differentially enriched
among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial
infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic
patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for
the TCGA image archives with insights into the tumor-immune microenvironment
Integrated Molecular Characterization of Uterine Carcinosarcoma
SummaryWe performed genomic, epigenomic, transcriptomic, and proteomic characterizations of uterine carcinosarcomas (UCSs). Cohort samples had extensive copy-number alterations and highly recurrent somatic mutations. Frequent mutations were found in TP53, PTEN, PIK3CA, PPP2R1A, FBXW7, and KRAS, similar to endometrioid and serous uterine carcinomas. Transcriptome sequencing identified a strong epithelial-to-mesenchymal transition (EMT) gene signature in a subset of cases that was attributable to epigenetic alterations at microRNA promoters. The range of EMT scores in UCS was the largest among all tumor types studied via The Cancer Genome Atlas. UCSs shared proteomic features with gynecologic carcinomas and sarcomas with intermediate EMT features. Multiple somatic mutations and copy-number alterations in genes that are therapeutic targets were identified
Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH -Mutant Molecular Profiles
Cholangiocarcinoma (CCA) is an aggressive malignancy of the bile ducts, with poor prognosis and limited treatment options. Here, we describe the integrated analysis of somatic mutations, RNA expression, copy number, and DNA methylation by The Cancer Genome Atlas of a set of predominantly intrahepatic CCA cases and propose a molecular classification scheme. We identified an IDH mutant-enriched subtype with distinct molecular features including low expression of chromatin modifiers, elevated expression of mitochondrial genes, and increased mitochondrial DNA copy number. Leveraging the multi-platform data, we observed that ARID1A exhibited DNA hypermethylation and decreased expression in the IDH mutant subtype. More broadly, we found that IDH mutations are associated with an expanded histological spectrum of liver tumors with molecular features that stratify with CCA. Our studies reveal insights into the molecular pathogenesis and heterogeneity of cholangiocarcinoma and provide classification information of potential therapeutic significance
- …