550 research outputs found

    Synergistic Trap Response of the False Stable Fly and Little House Fly (Diptera: Muscidae) to Acetic Acid and Ethanol, Two Principal Sugar Fermentation Volatiles

    Get PDF
    In an initial observation, large numbers of muscoid flies (Diptera) were captured as nontarget insects in traps baited with solutions of acetic acid plus ethanol. In subsequent field experiments, numbers of false stable fly Muscina stabulans (Fallén) and little house fly Fannia canicularis (L.) trapped with the combination of acetic acid plus ethanol were significantly higher than those trapped with either chemical alone, or in unbaited traps. Flies were trapped with acetic acid and ethanol that had been formulated in the water of the drowning solution of the trap, or dispensed from polypropylene vials with holes in the vial lids for diffusion of evaporated chemical. Numbers of both species of fly captured were greater with acetic acid and ethanol in glass McPhail traps, compared to four other similar wet trap designs. This combination of chemicals may be useful as an inexpensive and not unpleasant lure for monitoring or removing these two pest fly specie

    Response of Invasive Longhorn Beetles (Coleoptera: Lamiinae) to Known Cerambycid Aggregation-Sex Pheromones in the Puna District of Hawaii Island

    Get PDF
    The Queensland longhorn borer (QLB; Acalolepta aesthetica [Olliff 1890]; Coleoptera: Cerambycidae: Lamiinae: Monochamini) and plumeria long- horn borer (PLB; Lagocheirus obsoletus [Thomson 1778] = Lagocheirus undatus [Voet 1778]; Coleoptera: Cerambycidae: Lamiinae: Acanthocini) are invasive longhorn beetle species that have become established on the island of Hawaii. Both QLB and PLB are polyphagous. Known hosts of QLB include cacao, citrus, kukui, and breadfruit in Hawaii, and QLB are known to attack live, healthy trees. Currently the beetle occurs in the Puna district of the island, but its range is expanding. PLB is a pest of plumeria and other ornamental plants throughout the state of Hawaii and elsewhere. As a first step towards developing a monitoring tool for these invasive beetles, we tested four known aggregation-sex pheromones of cerambycids in this subfamily—monochamol, fuscumol acetate, fuscumol, and geranylacetone—that have proven effective for attracting more than 30 lamiine species in different areas of the world. When tested in panel traps, these compounds individually and in a blend attracted 9 QLB total, which was not significantly different than the 5 QLB captured in solvent control traps. In contrast, traps baited with one of the tested compounds, fuscumol acetate, captured significantly more PLB than solvent blank control traps. We discuss future research directions for developing attractants using chemical ecology approaches to monitor QLB and PLB

    Comparison of a Synthetic Chemical Lure and Standard Fermented Baits for Trapping Drosophila suzukii (Diptera: Drosophilidae)

    Get PDF
    We determined the attractiveness of a new chemical lure compared with fermented food baits in use for trapping Drosophila suzukii Matsumura, spotted wing drosophila (Diptera: Drosophilidae), in Connecticut, New York, and Washington in the United States and at Dossenheim in Germany. The chemical lure (SWD lure) and food baits were compared in two types of traps: the dome trap and a cup trap. Regardless of trap type, numbers of male and female D. suzukii trapped were greater with the SWD lure compared with apple cider vinegar (ACV) baits at the Washington and New York sites, and were comparable with numbers of D. suzukii captured with a wine plus vinegar bait (W + V) at Germany site and a combination bait meant to mimic W + V at the Connecticut site. Averaged over both types of attractants, the numbers of D. suzukii captured were greater in dome traps than in cup traps in New York and Connecticut for both male and female D. suzukii and in Washington for male D. suzukii. No such differences were found between trap types at the Washington site for female and Germany for male and female D. suzukii. Assessments were also made of the number of large (>0.5 cm) and small (<0.5 cm) nontarget flies trapped. The SWD lure captured fewer nontarget small flies and more large flies compared with ACV bait in New York and fewer nontarget small flies compared with W + V in Germany, although no such differences were found in Washington for the SWD lure versus ACV bait and in Connecticut for the SWD lure versus the combination bait, indicating that these effects are likely influenced by the local nontarget insect community active at the time of trapping. In New York, Connecticut, and Germany, dome traps caught more nontarget flies compared with cup traps. Our results suggest that the four-component SWD chemical lure is an effective attractant for D. suzukii and could be used in place of fermented food-type bait

    Ammonium Carbonate Is More Attractive Than Apple and Hawthorn Fruit Volatile Lures to Rhagoletis pomonella (Diptera: Tephritidae) in Washington State

    Get PDF
    The apple maggot fly, Rhagoletis pomonella (Walsh), is an introduced, quarantine pest of apple (Malus domestica Borkhausen) in the Pacific Northwest of the United States. In the eastern United States where the fly is native, fruit volatiles have been reported to be more attractive than ammonia compounds to R. pomonella. However, the opposite may be true in the western United States. Here, we determined whether newly identified western apple and western hawthorn fruit volatiles are more attractive than ammonium carbonate (AC) to R. pomonella in apple, black hawthorn, and ornamental hawthorn trees in western Washington State. In all three host trees, sticky red sphere or yellow panel traps baited with AC generally caught more flies than traps baited with lures containing the four newly developed fruit blends (modified eastern apple, western apple, western ornamental hawthorn, and western black hawthorn) or two older blends (eastern apple and eastern downy hawthorn). Fruit volatiles also displayed more variation among trapping studies conducted at different sites, in different host trees, and across years than AC. The results imply that traps baited with AC represent the best approach to monitoring R. pomonella in Washington Stat

    Monitoring Grape Berry Moth (Paralobesia viteana: Lepidoptera) in Commercial Vineyards using a Host Plant Based Synthetic Lure

    Get PDF
    For some Lepidopteran pests, such as the grape berry moth Paralobesia viteana (Clemens), poor correlation between males captured in traps baited with sex pheromone and oviposition activities of female moths has called into question the value of pheromone-based monitoring for these species. As an alternative, we compared the capture of female and male grape berry moth in panel traps baited with synthetic host volatiles with captures of males in pheromone-baited wing traps over two growing seasons in two blocks of grapes in a commercial vineyard in central New York. Lures formulated in hexane to release either 7-component or 13-component host volatile blends captured significantly more male and female grape berry moth on panel traps compared with the numbers captured on panel traps with hexane-only lures. For both sexes over both years, the same or more moths were captured in panel traps along the forest edge compared with the vineyard edge early in the season but this pattern was reversed by mid-season. Male moths captured in pheromone-baited wing traps also displayed this temporal shift in location. There was a significant positive correlation between captured males and females on panel traps although not between females captured on panel traps and males captured in pheromone-baited traps for both years suggesting pheromone traps do not accurately reflect either female or male activity. Male moths captured in pheromone traps indicated a large peak early in each season corresponding to first flight followed by lower and variable numbers that did not clearly indicate second and third flights. Panel trap data, combining males and females, indicated three distinct flights, with some overlap between the second and third flights. Peak numbers of moths captured on panel traps matched well with predictions of a temperature-based phenology model, especially in 2008. Although effective, panel traps baited with synthetic host lures were time consuming to deploy and maintain and captured relatively few moths making them impractical, in the current design, for commercial purpose

    Efficient Ruddlesden-Popper Perovskite Light-Emitting Diodes with Randomly Oriented Nanocrystals

    Get PDF
    Ruddlesden-Popper phase (RP-phase) perovskites that consist of 2D perovskite slabs interleaved with bulky organic ammonium (OA) are favorable for light-emitting diodes (LEDs). The critical limitation of LED applications is that the insulating OA arranged in a preferred orientation limits charge transport. Therefore, the ideal solution is to achieve a randomly connected structure that can improve charge transport without hampering the confinement of the electron-hole pair. Here, a structurally modulated RP-phase metal halide perovskite (MHP), (PEA)(2)(CH3NH3)(m-1)PbmBr3m+1 is introduced to make the randomly oriented RP-phase unit and ensure good connection between them by applying modified nanocrystal pinning, which leads to an increase in the efficiency of perovskite LEDs (PeLEDs). The randomly connected RP-phase MHP forces contact between inorganic layers and thereby yields efficient charge transport and radiative recombination. Combined with an optimal dimensionality, (PEA)(2)(CH3NH3)(2)Pb3Br10, the structurally modulated RP-phase MHP exhibits increased photoluminescence quantum efficiency, from 0.35% to 30.3%, and their PeLEDs show a 2,018 times higher current efficiency (20.18 cd A(-1)) than in the 2D PeLED (0.01 cd A(-1)) and 673 times than in the 3D PeLED (0.03 cd A(-1)) using the same film formation process. This approach provides insight on how to solve the limitation of RP-phase MHP for efficient PeLEDs.

    Eavesdropping on Plant Volatiles by a Specialist Moth: Significance of Ratio and Concentration

    Get PDF
    We investigated the role that the ratio and concentration of ubiquitous plant volatiles play in providing host specificity for the diet specialist grape berry moth Paralobesia viteana (Clemens) in the process of locating its primary host plant Vitis sp. In the first flight tunnel experiment, using a previously identified attractive blend with seven common but essential components (“optimized blend”), we found that doubling the amount of six compounds singly [(E)- & (Z)-linalool oxides, nonanal, decanal, β-caryophyllene, or germacrene-D], while keeping the concentration of other compounds constant, significantly reduced female attraction (average 76% full and 59% partial upwind flight reduction) to the synthetic blends. However, doubling (E)-4,8-dimethyl 1,3,7-nonatriene had no effect on female response. In the second experiment, we manipulated the volatile profile more naturally by exposing clonal grapevines to Japanese beetle feeding. In the flight tunnel, foliar damage significantly reduced female landing on grape shoots by 72% and full upwind flight by 24%. The reduction was associated with two changes: (1) more than a two-fold increase in total amount of the seven essential volatile compounds, and (2) changes in their relative ratios. Compared to the optimized blend, synthetic blends mimicking the volatile ratio emitted by damaged grapevines resulted in an average of 87% and 32% reduction in full and partial upwind orientation, respectively, and the level of reduction was similar at both high and low doses. Taken together, these results demonstrate that the specificity of a ubiquitous volatile blend is determined, in part, by the ratio of key volatile compounds for this diet specialist. However, P. viteana was also able to accommodate significant variation in the ratio of some compounds as well as the concentration of the overall mixture. Such plasticity may be critical for phytophagous insects to successfully eavesdrop on variable host plant volatile signals

    <i>Spitzer</i> microlens measurement of a massive remnant in a well-separated binary

    Get PDF
    We report the detection and mass measurement of a binary lens OGLE-2015-BLG-1285La,b, with the more massive component having M1 > 1.35 M⊙ (80% probability). A main-sequence star in this mass range is ruled out by limits on blue light, meaning that a primary in this mass range must be a neutron star (NS) or black hole (BH). The system has a projected separation r⊥ = 6.1 ± 0.4 AU and lies in the Galactic bulge. These measurements are based on the "microlens parallax" effect, i.e., comparing the microlensing light curve as seen from Spitzer, which lay at 1.25 AU projected from Earth, to the light curves from four ground-based surveys, three in the optical and one in the near-infrared. Future adaptive optics imaging of the companion by 30 m class telescopes will yield a much more accurate measurement of the primary mass. This discovery both opens the path and defines the challenges to detecting and characterizing BHs and NSs in wide binaries, with either dark or luminous companions. In particular, we discuss lessons that can be applied to future Spitzer and Kepler K2 microlensing parallax observations

    NINJ2 SNP may affect the onset age of first-ever ischemic stroke without increasing silent cerebrovascular lesions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To investigate if single nucleotide polymorphisms on chromosome 12p13 and within 11 kb of the gene <it>NINJ2 </it>would be associated with earlier-onset (vs. late-onset) first-ever ischemic stroke and increase silent cerebrovascular lesions prior to the manifestation of the stroke.</p> <p>Methods</p> <p>We prospectively enrolled 164 patients (67.6 ± 12.9 years, 92 men) admitted with first-ever ischemic strokes. All patients underwent genotyping of rs11833579 and rs12425791 as well as systemic investigations including magnetic resonance (MR) imaging and other vascular workup. Stroke-related MR lesions were registered on a brain-template-set using a custom-built software package 'Image_QNA': high-signal-intensity ischemic lesions on diffusion, T2-weighted, or fluid attenuation inversion recovery (FLAIR) MR images, and low signal intensity hemorrhagic lesions on gradient-echo MR images.</p> <p>Results</p> <p>The rs11833579 A/A or G/A genotype was independently associated with the first-ever ischemic stroke before the age 59 vs. 59 or over, after adjusting for cardiovascular risk factors and prior medication of antiplatelet or anticoagulant drugs, increasing the risk by about 2.5 fold. In the quantitative MR lesion maps from age-sex matched subgroups (n = 124 or 126), there was no difference between the patients with the rs11833579 A/A or G/A genotype and those with the G/G genotype. Unexpectedly, the extent of leukoaraiosis on FLAIR-MR images tended to be smaller in the corona radiata and centrum semiovale of the patients with the rs12425791 A/A or G/A genotype than in those with the G/G genotype (<it>P </it>= 0.052). Neither the rs11833579 nor the rs12425791 genotype significantly affected initial stroke severity; however the latter was associated with relatively low modified Rankin scale scores at 1 year after stroke.</p> <p>Conclusions</p> <p>The rs11833579 A/A or G/A genotype may bring forward the onset age of first-ever ischemic stroke without increasing silent cerebrovascular lesions prior to the stroke. Further studies are required to confirm our preliminary findings.</p

    Thermal Properties of Carbon Nanotube–Copper Composites for Thermal Management Applications

    Get PDF
    Carbon nanotube–copper (CNT/Cu) composites have been successfully synthesized by means of a novel particles-compositing process followed by spark plasma sintering (SPS) technique. The thermal conductivity of the composites was measured by a laser flash technique and theoretical analyzed using an effective medium approach. The experimental results showed that the thermal conductivity unusually decreased after the incorporation of CNTs. Theoretical analyses revealed that the interfacial thermal resistance between the CNTs and the Cu matrix plays a crucial role in determining the thermal conductivity of bulk composites, and only small interfacial thermal resistance can induce a significant degradation in thermal conductivity for CNT/Cu composites. The influence of sintering condition on the thermal conductivity depended on the combined effects of multiple factors, i.e. porosity, CNTs distribution and CNT kinks or twists. The composites sintered at 600°C for 5 min under 50 MPa showed the maximum thermal conductivity. CNT/Cu composites are considered to be a promising material for thermal management applications
    corecore