10,559 research outputs found
A study of compressible turbulent boundary layers using the method of invariant modeling
Model equations for studying compressible turbulen boundary layer
Nondispersive infrared analyzer for specific gases in complex mixtures
Analyzer identifies and measures particular diatomic or polyatomic gases in complex gas mixtures. Mixing of absorption effects on light energy passing through gases to photodetector produces a signal component that is related to the absorption caused by reference-gas component in unknown gas mixture
Fabrication of a repulsive-type magnetic bearing using a novel arrangement of permanent magnets for vertical-rotor suspension
A repulsive-type magnetic bearing system has been fabricated in which the rotor of a vertical-shaft-type motor is levitated due to the repulsive force between two sets of permanent magnets. A novel arrangement of permanent magnets has been reported here, which has made the suspension of the rotor possible. The system is planned to be applied for pumping milks and other related products in the New Zealand dairy industry
Simulating operational memory models using off-the-shelf program analysis tools
Memory models allow reasoning about the correctness of multithreaded programs. Constructing and using such models is facilitated by simulators that reveal which behaviours of a given program are allowed. While extensive work has been done on simulating axiomatic memory models, there has been less work on simulation of operational models. Operational models are often considered more intuitive than axiomatic models, but are challenging to simulate due to the vast number of paths through the model’s transition system. Observing that a similar path-explosion problem is tackled by program analysis tools, we investigate the idea of reducing the decision problem of “whether a given memory model allows a given behaviour” to the decision problem of “whether a given C program is safe”, which can be handled by a variety of off-the-shelf tools. We report on our experience using multiple program analysis tools for C for this purpose—a model checker (CBMC), a symbolic execution tool (KLEE), and three coverage-guided fuzzers (libFuzzer, Centipede and AFL++)—presenting two case-studies. First, we evaluate the performance and scalability of these tools in the context of the x86 memory model, showing that fuzzers offer performance competitive with that of RMEM, a state-of-the-art bespoke memory model simulator. Second, we study a more complex, recently developed memory model for hybrid CPU/FPGA devices for which no bespoke simulator is available. We highlight how different encoding strategies can aid the various tools and show how our approach allows us to simulate the CPU/FPGA model twice as deeply as in prior work, leading to us finding and fixing several infidelities in the model. We also experimented with applying three analysis tools that won the “falsification” category in the 2023 Annual Software Verification Competition (SV-COMP). We found that these tools do not scale to our use cases, motivating us to submit example C programs arising from our work for inclusion in the set of SV-COMP benchmarks, so that they can serve as challenge examples
The ADHM Construction of Instantons on Noncommutative Spaces
We present an account of the ADHM construction of instantons on Euclidean
space-time from the point of view of noncommutative geometry. We
recall the main ingredients of the classical construction in a coordinate
algebra format, which we then deform using a cocycle twisting procedure to
obtain a method for constructing families of instantons on noncommutative
space-time, parameterised by solutions to an appropriate set of ADHM equations.
We illustrate the noncommutative construction in two special cases: the
Moyal-Groenewold plane and the Connes-Landi plane
.Comment: Latex, 40 page
Left Ventricular Function and Cardiac Biomarker Release-The Influence of Exercise Intensity, Duration and Mode: A Systematic Review and Meta-Analysis.
OBJECTIVE: We performed a systematic review, meta-analysis and meta-regression of exercise studies that sought to determine the relationship between cardiac troponin (cTn) and left ventricular (LV) function. The second objective was to determine how study-level and exercise factors influenced the variation in the body of literature. DATA SOURCES: A systematic search of Pubmed Central, Science Direct, SPORTDISCUS and MEDLINE databases. ELIGIBILITY CRITERIA: Original research articles published between 1997 and 2018 involving > 30 mins of continuous exercise, measuring cardiac troponin event rates and either LV ejection fraction (LVEF) or the ratio of the peak early (E) to peak late (A) filling velocity (E/A ratio). DESIGN: Random-effects meta-analyses and meta-regressions with four a priori determined covariates (age, exercise heart rate [HR], duration, mass). REGISTRATION: The systematic search strategy was registered on the PROSPERO database (CRD42018102176). RESULTS: Pooled cTn event rates were evident in 45.6% of participants (95% confidence interval (CI) 33.6-58.2); however, the overall effect was non-significant (P > 0.05). There were significant (P < 0.05) reductions in E/A ratio of - 0.38 (SMD = - 1.2, 95% CI - 1.4 to - 1.0), and LVEF of - 2.02% (SMD = - 0.38, 95% CI - 0.7 to - 0.1) pre- to post-exercise. Increased exercise HR was a significant predictor of troponin release and E/A ratio. Participant age was negatively associated with cTn release. There was a significant negative association between E/A ratio with increased rates of cTn release (P < 0.05). CONCLUSIONS: High levels of statistical heterogeneity and methodological variability exist in the majority of EICF studies. Our findings show that exercise intensity and age are the most powerful determinants of cTn release. Diastolic function is influenced by exercise HR and cTn release, which implies that exercise bouts at high intensities are enough to elicit cTn release and reduce LV diastolic function. Future EICF studies should (1) utilise specific echocardiographic techniques such as myocardial speckle tracking, (2) ensure participants are euhydrated during post-exercise measurements, and (3) repeat measures in the hours following exercise to assess symptom progression or recovery. It is also recommended to further explore the relationship between aging, training history, and exercise intensity on cTn release and functional changes
N=2 Topological Yang-Mills Theory on Compact K\"{a}hler Surfaces
We study a topological Yang-Mills theory with fermionic symmetry. Our
formalism is a field theoretical interpretation of the Donaldson polynomial
invariants on compact K\"{a}hler surfaces. We also study an analogous theory on
compact oriented Riemann surfaces and briefly discuss a possible application of
the Witten's non-Abelian localization formula to the problems in the case of
compact K\"{a}hler surfaces.Comment: ESENAT-93-01 & YUMS-93-10, 34pages: [Final Version] to appear in
Comm. Math. Phy
Enhanced uptake of water by oxidatively processed oleic acid
International audienceA quartz crystal microbalance apparatus has been used to measure the room temperature uptake of water vapour by thin films of oleic acid as a function of relative humidity, both before and following exposure of the films to various partial pressures of gas phase ozone. A rapid increase in the water-sorbing ability of the film is observed as its exposure to ozone is increased, followed by a plateau region in which additional water is taken up more gradually. In this fully-processed region the mass of water taken up by the film is about 4 times that of the unprocessed film. Infrared spectra of the films, measured after variable exposures to ozone, show dramatic increases in both the "free" and hydrogen-bonded O-H stretching regions, and a decrease in the intensity of olefinic features. These results are consistent with the formation of an oxygenated polymeric product or products, as well as the gas phase products previously identified
- …