121 research outputs found

    Potential Use of Perennial Sunflower to Reduce Blackbird Damage to Sunflower

    Get PDF
    Wildlife Conservation Sunflower Plots (WCSP) have shown potential to reduce blackbird (Icteridae) damage in commercial sunflower. Also known as lure, decoy, or trap crops, WCSP are strategically placed food plots that provide an easily available and proximate food source that entices blackbirds away from valuable commercial crops. By providing an alternative food source, WCSP reduce direct damage to commercial fields, while also lowering indirect costs that producers incur attempting to prevent blackbird damage. However, cost inefficiencies have deterred widespread use of WCSP. Cost-benefit ratios of using WCSP would be greatly improved if a perennial sunflower were used instead of the annual types currently available. Perennial sunflower would reduce seed cost and planting cost, and perhaps lower opportunity costs, if able to thrive on poorer quality soils. In the near-term, scientists are focused on producing a perennial sunflower sufficiently productive to replace annualWCSP plantings. In 2013, scientists from the University of Minnesota, USDA-Agricultural Research Service, and USDAWildlife Services National Wildlife Research Center evaluated a test plot of an open-pollinated variety of perennial sunflower resulting from genetic crossing of a domesticated annual species (Helianthus annuus) and a perennial wild species (H. tuberosus). Here, we report on results from the 2013 field test and discuss the outlook for development of perennial sunflower, which would help lessen damage to commercial sunflower when used in WCSP; provide a pesticide-free food source for beneficial insects, such as honey bees; help stabilize highly erodible lands near wetlands; and provide year-round habitat for wildlife. Lastly, we provide an initial strategy for using perennial sunflower to reduce blackbird damage in commercial sunflower

    Potential Use of Perennial Sunflower to Reduce Blackbird Damage to Sunflower

    Get PDF
    Wildlife Conservation Sunflower Plots (WCSP) have shown potential to reduce blackbird (Icteridae) damage in commercial sunflower. Also known as lure, decoy, or trap crops, WCSP are strategically placed food plots that provide an easily available and proximate food source that entices blackbirds away from valuable commercial crops. By providing an alternative food source, WCSP reduce direct damage to commercial fields, while also lowering indirect costs that producers incur attempting to prevent blackbird damage. However, cost inefficiencies have deterred widespread use of WCSP. Cost-benefit ratios of using WCSP would be greatly improved if a perennial sunflower were used instead of the annual types currently available. Perennial sunflower would reduce seed cost and planting cost, and perhaps lower opportunity costs, if able to thrive on poorer quality soils. In the near-term, scientists are focused on producing a perennial sunflower sufficiently productive to replace annualWCSP plantings. In 2013, scientists from the University of Minnesota, USDA-Agricultural Research Service, and USDAWildlife Services National Wildlife Research Center evaluated a test plot of an open-pollinated variety of perennial sunflower resulting from genetic crossing of a domesticated annual species (Helianthus annuus) and a perennial wild species (H. tuberosus). Here, we report on results from the 2013 field test and discuss the outlook for development of perennial sunflower, which would help lessen damage to commercial sunflower when used in WCSP; provide a pesticide-free food source for beneficial insects, such as honey bees; help stabilize highly erodible lands near wetlands; and provide year-round habitat for wildlife. Lastly, we provide an initial strategy for using perennial sunflower to reduce blackbird damage in commercial sunflower

    Role of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) in Modulating Vascular Smooth Muscle Cells by Activating Large-Conductance Potassium Ion Channels

    Get PDF
    International audienceIn this chapter we propose to discuss the role of K+ ion channels in stimulating vasodilatation by altering the membrane potential of vascular smooth muscle cells. We present evidence that the K+ channels are modulated by a direct action of non-steroidal antiinflammatory drugs (NSAIDs) to activate the K+ ion channels

    Population-level seasonality in cardiovascular mortality, blood pressure, BMI and inflammatory cells in UK Biobank

    Get PDF
    Introduction: The risk of mortality from cardiovascular disease (CVD) is higher in wintertime throughout the world, but it is not known if this reflects annual changes in diet or lifestyle, or an endogenous photoperiodic mechanism that is sensitive to changes in daylength. Methods: Phenotypic data on cardiometabolic and lifestyle factors were collected throughout a 4 year time period from 502,642 middle-aged participants in UK Biobank. To assess the impact of seasonal environmental changes on cardiovascular risk factors, we linked these data to the outdoor temperature and day length at the time of assessment. Self-reported information on physical activity, diet and disease status were used to adjust for confounding factors related to health and lifestyle. Results: Mortality related to CVD was higher in winter, as were risk factors for this condition including blood pressure, markers of inflammation and BMI. These seasonal rhythms were significantly related to day length after adjustment for other factors that might affect seasonality including physical activity, diet and outdoor temperature. Conclusions: The risk of CVD may be modulated by day length at temperate latitudes, and the implications of seasonality should be considered in all studies of human cardiometabolic health

    Establishment and optimization of genomic selection to accelerate the domestication and improvement of intermediate wheatgrass

    Get PDF
    Citation: Zhang, X., Sallam, A., Gao, L., Kantarski, T., Poland, J., DeHaan, L. R., . . . Anderson, J. A. (2016). Establishment and optimization of genomic selection to accelerate the domestication and improvement of intermediate wheatgrass. Plant Genome, 9(1). doi:10.3835/plantgenome2015.07.0059Intermediate wheatgrass (IWG) is a perennial species and has edible and nutritious grain and desirable agronomic traits, including large seed size, high grain yield, and biomass. It also has the potential to provide ecosystem services and an economic return to farmers. However, because of its allohexaploidy and self-incompatibility, developing molecular markers for genetic analysis and molecular breeding has been challenging. In the present study, using genotyping-by-sequencing (GBS) technology, 3436 genomewide markers discovered in a biparental population with 178 genets, were mapped to 21 linkage groups (LG) corresponding to 21 chromosomes of IWG. Genomic prediction models were developed using 3883 markers discovered in a breeding population containing 1126 representative genets from 58 half-sib families. High predictive ability was observed for seven agronomic traits using cross-validation, ranging from 0.46 for biomass to 0.67 for seed weight. Optimization results indicated that 8 to 10 genets from each half-sib family can form a good training population to predict the breeding value of their siblings, and 1600 genomewide markers are adequate to capture the genetic variation in the current breeding population for genomic selection. Thus, with the advances in sequencing-based marker technologies, it was practical to perform molecular genetic analysis and molecular breeding on a new and challenging species like IWG, and genomic selection could increase the efficiency of recurrent selection and accelerate the domestication and improvement of IWG.A. © Crop Science Society of America

    Seasonality of depressive symptoms in women but not in men: a cross-sectional study in the UK Biobank cohort

    Get PDF
    Background: We examined whether seasonal variations in depressive symptoms occurred independently of demographic and lifestyle factors, and were related to change in day length and/or outdoor temperature. Methods: In a cross-sectional analysis of >150,000 participants of the UK Biobank cohort, we used the cosinor method to assess evidence of seasonality of a total depressive symptoms score and of low mood, anhedonia, tenseness and tiredness scores in women and men. Associations of depressive symptoms with day length and mean outdoor temperature were then examined. Results: Seasonality of total depressive symptom scores, anhedonia and tiredness scores was observed in women but not men, with peaks in winter. In women, increased day length was associated with reduced low mood and anhedonia scores, independent of demographic and lifestyle factors. For women, longer day length was associated with increased tiredness. Associations with day length were not independent of the average outdoor temperature preceding assessment. Limitations: This was a cross-sectional investigation – longitudinal studies of within-subject seasonal variation in mood are necessary. Outcome measures relied on self-report and measured only a subset of depressive symptoms. Conclusion: This large, population-based study provides evidence of seasonal variation in depressive symptoms in women. Shorter days were associated with increased feelings of low mood and anhedonia in women. Clinicians should be aware of these population-level sex differences in seasonal mood variations in order to aid recognition and treatment of depression and subclinical depressive symptoms

    Association of disrupted circadian rhythmicity with mood disorders, subjective wellbeing, and cognitive function: a cross-sectional study of 91 105 participants from the UK Biobank

    Get PDF
    Background: Disruption of sleep and circadian rhythmicity is a core feature of mood disorders and might be associated with increased susceptibility to such disorders. Previous studies in this area have used subjective reports of activity and sleep patterns, but the availability of accelerometer-based data from UK Biobank participants permits the derivation and analysis of new, objectively ascertained circadian rhythmicity parameters. We examined associations between objectively assessed circadian rhythmicity and mental health and wellbeing phenotypes, including lifetime history of mood disorder. Methods: UK residents aged 37–73 years were recruited into the UK Biobank general population cohort from 2006 to 2010. We used data from a subset of participants whose activity levels were recorded by wearing a wrist-worn accelerometer for 7 days. From these data, we derived a circadian relative amplitude variable, which is a measure of the extent to which circadian rhythmicity of rest–activity cycles is disrupted. In the same sample, we examined cross-sectional associations between low relative amplitude and mood disorder, wellbeing, and cognitive variables using a series of regression models. Our final model adjusted for age and season at the time that accelerometry started, sex, ethnic origin, Townsend deprivation score, smoking status, alcohol intake, educational attainment, overall mean acceleration recorded by accelerometry, body-mass index, and a binary measure of childhood trauma. Findings: We included 91 105 participants with accelerometery data collected between 2013 and 2015 in our analyses. A one-quintile reduction in relative amplitude was associated with increased risk of lifetime major depressive disorder (odds ratio [OR] 1·06, 95% CI 1·04–1·08) and lifetime bipolar disorder (1·11, 1·03–1·20), as well as with greater mood instability (1·02, 1·01–1·04), higher neuroticism scores (incident rate ratio 1·01, 1·01–1·02), more subjective loneliness (OR 1·09, 1·07–1·11), lower happiness (0·91, 0·90–0·93), lower health satisfaction (0·90, 0·89–0·91), and slower reaction times (linear regression coefficient 1·75, 1·05–2·45). These associations were independent of demographic, lifestyle, education, and overall activity confounders. Interpretation: Circadian disruption is reliably associated with various adverse mental health and wellbeing outcomes, including major depressive disorder and bipolar disorder. Lower relative amplitude might be linked to increased susceptibility to mood disorders

    The Milky Way Tomography with SDSS: I. Stellar Number Density Distribution

    Full text link
    Abridged: We estimate the distances to ~48 million stars detected by the Sloan Digital Sky Survey and map their 3D number density distribution in 100 < D < 20 kpc range over 6,500 deg^2 of sky. The data show strong evidence for a Galaxy consisting of an oblate halo, a disk component, and a number of localized overdensities with exponential disk parameters (bias-corrected for an assumed 35% binary fraction) H_1 = 300 pc, L_1 = 2600 pc, H_2 = 900 pc, L_2 = 3600 pc, and local density normalization of 12%. We find the halo to be oblate, with best-fit axis ratio c/a = 0.64, r^{-2.8} profile, and the local halo-to-thin disk normalization of 0.5%. We estimate the errors of derived model parameters to be no larger than ~20% (disk scales) and ~10% (thick disk normalization). While generally consistent with the above model, the density distribution shows a number of statistically significant localized deviations. We detect two overdensities in the thick disk region at (R, Z) ~ (6.5, 1.5)kpc and (R, Z) ~ (9.5, 0.8) kpc, and a remarkable density enhancement in the halo covering >1000deg^2 of sky towards the constellation of Virgo, at distances of ~6-20 kpc. Compared to a region symmetric with respect to the l=0 line, the Virgo overdensity is responsible for a factor of 2 number density excess and may be a nearby tidal stream or a low-surface brightness dwarf galaxy merging with the Milky Way. After removal of the resolved overdensities, the remaining data are consistent with a smooth density distribution; we detect no evidence of further unresolved clumpy substructure at scales ranging from ~50pc in the disk, to ~1 - 2 kpc in the halo.Comment: 60 pages, 46 figures (reduced resolution; see the ApJ for hi-res version

    The Ghost of Sagittarius and Lumps in the Halo of the Milky Way

    Get PDF
    We identify new structures in the halo of the Milky Way Galaxy from positions, colors and magnitudes of five million stars detected in the Sloan Digital Sky Survey. Most of these stars are within 1.26 degrees of the celestial equator. We present color-magnitude diagrams (CMDs) for stars in two previously discovered, tidally disrupted structures. The CMDs and turnoff colors are consistent with those of the Sagittarius dwarf galaxy, as had been predicted. In one direction, we are even able to detect a clump of red stars, similar to that of the Sagittarius dwarf, from stars spread across 110 square degrees of sky. Focusing on stars with the colors of F turnoff objects, we identify at least five additional overdensities of stars. Four of these may be pieces of the same halo structure, which would cover a region of the sky at least 40 degrees in diameter, at a distance of 11 kpc from the Sun (18 kpc from the center of the Galaxy). The turnoff is significantly bluer than that of thick disk stars, and closer to the Galactic plane than a power-law spheroid. We suggest two models to explain this new structure. One possibility is that this new structure could be a new dwarf satellite of the Milky Way, hidden in the Galactic plane, and in the process of being tidally disrupted. The other possibility is that it could be part of a disk-like distribution of stars which is metal-poor, with a scale height of approximately 2 kpc and a scale length of approximately 10 kpc. The fifth overdensity, which is 20 kpc away, is some distance from the Sagittarius dwarf streamer orbit and is not associated with any known structure in the Galactic plane. It is likely that there are many smaller streams of stars in the Galactic halo.Comment: ApJ, in press; 26 figures including several in colo

    Uncovering the Genetic Architecture of Seed Weight and Size in Intermediate Wheatgrass through Linkage and Association Mapping

    Get PDF
    Intermediate wheatgrass [IWG; Thinopyrum intermedium (Host) Barkworth & D.R. Dewey subsp. intermedium] is being developed as a new perennial grain crop that has a large allohexaploid genome similar to that of wheat (Triticum aestivum L.). Breeding for increased seed weight is one of the primary goals for improving grain yield of IWG. As a new crop, however, the genetic architecture of seed weight and size has not been characterized, and selective breeding of IWG may be more intricate than wheat because of its self-incompatible mating system and perennial growth habit. Here, seed weight, seed area size, seed width, and seed length were evaluated across multiple years, in a heterogeneous breeding population comprised of 1126 genets and two clonally replicated biparental populations comprised of 172 and 265 genets. Among 10,171 DNA markers discovered using genotyping-by-sequencing (GBS) in the breeding population, 4731 markers were present in a consensus genetic map previously constructed using seven full-sib populations. Thirty-three quantitative trait loci (QTL) associated with seed weight and size were identified using association mapping (AM), of which 23 were verified using linkage mapping in the biparental populations. About 37.6% of seed weight variation in the breeding population was explained by 15 QTL, 12 of which also contributed to either seed length or seed width. When performing either phenotypic selection or genomic selection for seed weight, we observed the frequency of favorable QTL alleles were increased to \u3e46%. Thus, by combining AM and genomic selection, we can effectively select the favorable QTL alleles for seed weight and size in IWG breeding populations
    corecore