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original research

Uncovering the Genetic Architecture of Seed Weight 
and Size in Intermediate Wheatgrass through Linkage 
and Association Mapping

Xiaofei Zhang,* Steven R. Larson, Liangliang Gao, Soon Li Teh, Lee R. DeHaan,  
Max Fraser, Ahmad Sallam, Traci Kantarski, Katherine Frels, Jesse Poland,  
Donald Wyse, and James A. Anderson*

Abstract
Intermediate wheatgrass [IWG; Thinopyrum intermedium (Host) 
Barkworth & D.R. Dewey subsp. intermedium] is being developed 
as a new perennial grain crop that has a large allohexaploid 
genome similar to that of wheat (Triticum aestivum L.). Breeding for 
increased seed weight is one of the primary goals for improving 
grain yield of IWG. As a new crop, however, the genetic archi-
tecture of seed weight and size has not been characterized, and 
selective breeding of IWG may be more intricate than wheat be-
cause of its self-incompatible mating system and perennial growth 
habit. Here, seed weight, seed area size, seed width, and seed 
length were evaluated across multiple years, in a heterogeneous 
breeding population comprised of 1126 genets and two clonally 
replicated biparental populations comprised of 172 and 265 gen-
ets. Among 10,171 DNA markers discovered using genotyping-
by-sequencing (GBS) in the breeding population, 4731 markers 
were present in a consensus genetic map previously constructed 
using seven full-sib populations. Thirty-three quantitative trait loci 
(QTL) associated with seed weight and size were identified using 
association mapping (AM), of which 23 were verified using link-
age mapping in the biparental populations. About 37.6% of seed 
weight variation in the breeding population was explained by 15 
QTL, 12 of which also contributed to either seed length or seed 
width. When performing either phenotypic selection or genomic 
selection for seed weight, we observed the frequency of favorable 
QTL alleles were increased to >46%. Thus, by combining AM and 
genomic selection, we can effectively select the favorable QTL al-
leles for seed weight and size in IWG breeding populations.

Intermediate wheatgrass (2n = 6x = 42) is a new peren-
nial grain crop (Wagoner, 1990; Kantar et al., 2016). 

Compared with annual grain crops, it has an extended 
growing season and deep roots, which increase carbon 
sequestration and help prevent runoff and improve water 
quality (Glover et al., 2010; Culman et al., 2013). Moreover, 
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Core Ideas

•	 Twenty-three shared QTL were identified using 
linkage and association mapping

•	 Overlapped QTL explained the high genetic 
correlation among seed weight and size

•	 QTL responded positively to either phenotypic 
selection or genomic selection

•	 Combining association mapping and genomic 
selection would increase genetic gain
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the harvested grain can be used to produce a diversity 
of food products, such as cookies, pancakes, and bread 
(Wagoner, 1990; DeHaan et al., 2014; Zhang et al., 2015). 
In addition, IWG produces substantial biomass for animal 
feed or bioenergy production (Harmoney, 2015). Thus, 
IWG is a promising perennial grain and forage crop, pro-
viding both environmental services and economic benefits 
to farmers (Runck et al., 2014; Kantar et al., 2016).

The domestication of IWG was initiated in the 1980s 
at the Rodale Research Center, PA. Currently, The Land 
Institute, KS, the University of Minnesota, MN, and the 
University of Manitoba, Canada, are pursuing breeding 
efforts to improve grain yield, seed size, threshability, 
shattering resistance, lodging resistance, and develop 
cultivars for farmers (DeHaan et al., 2014; Cattani, 2016; 
Zhang et al., 2016). Since the inception of breeding 
efforts, only about 10 cycles of selection have been per-
formed. In the breeding populations, there is substantial 
variation in the agronomic traits, such as height, biomass, 
grain yield, and seed weight. We observed that the dif-
ference between minimum and maximum values of each 
trait ranged from over threefold for height to over 14-fold 
for head weight in our breeding population (Zhang et al., 
2016). Because of the large genetic variation in the breed-
ing population, two cycles of selection resulted in a 77% 
increase in seed yield (DeHaan et al., 2014).

Seed weight and size are key traits in most crops. 
Large seeds contribute to large grain yield and are easier 
to harvest and process for farmers (Moles et al., 2005). 
Thus, seed weight was a primary target in the domestica-
tion of many crops and is selected in breeding programs, 
including wheat, rice (Oryza sativa L.), soybean [Glycine 
max (L.) Merr.], and sorghum [Sorghum bicolor (L.) 
Moench; Huang et al., 2013; Williams and Sorrells, 2014; 
Zhou et al., 2015]. Seed size, the major determinant of 
seed weight, is characterized by a combination of seed 
length, seed width, and seed thickness. These three 
parameters are positively correlated with seed weight 
(Tan et al., 2000). Seed weight and size have been widely 
accepted as a complex trait controlled by multiple genes 
(Tan et al., 2000; Huang et al., 2013), referred to as QTL. 
The identification of major QTL for seed weight and 
size is an important objective of crop genetic analysis 
and breeding programs. More than 400 QTL associated 
with seed traits have been identified in rice (Huang et 
al., 2013). In wheat, seed size QTL of varying effect were 
detected on all chromosomes (Williams and Sorrells, 
2014). With little genetic research performed on IWG, no 
QTL for seed weight have been reported to date.

Compared with average seed weight of over 30 mg 
for bread wheat (Zanke et al., 2015), IWG has relatively 
small seeds. The seed weight, on average, was 4.1 mg 
in the initial breeding population at The Land Institute 
(DeHaan et al., 2014). After eight cycles of mass selection, 
the seed weight was doubled when grown in a spaced 
plant selection nursery. In the University of Minnesota 
breeding population, derived from the third cycle of 
selection from The Land Institute, the seed weight ranged 

from 3.26 mg to 13.25 mg, with 8.32 mg as the mean in 
Minnesota (Zhang et al., 2016). Conventional breeding 
using phenotypic selection-based recurrent selection is 
resulting in seed weight improvement, but it is a time and 
labor-consuming process.

Recent advances in sequencing technologies have 
been revolutionizing plant breeding and genetic research 
by dramatically reducing the cost of genome-wide marker 
discovery for any species (Davey et al., 2011). These 
technologies, such as GBS and restriction site associated 
DNA sequencing, have been successfully used to discover 
molecular markers for genetic map development, linkage 
mapping and AM, and genomic selection (e.g., Poland and 
Rife, 2012; Russell et al., 2014; Carlson et al., 2015; Gorjanc 
et al., 2015; Iquira et al., 2015). Using GBS, we developed 
the first consensus genetic map of IWG with 10,029 mark-
ers (Kantarski et al., 2016), and identified 3883 markers 
from an IWG breeding population for genomic selection 
(Zhang et al., 2016). A genomic selection-based breeding 
scheme was proposed to accelerate the domestication and 
improvement of IWG. Using this breeding scheme, less 
labor is required for planting, weeding, harvesting, thresh-
ing, and phenotyping (Zhang et al., 2016).

In contrast with grain yield, seed weight and size 
have high heritability (Zhang et al., 2016). Many major 
QTL associated with seed weight, length, and width 
have been fine-mapped or recently cloned; for example, 
GW2, GS3, and GS5 in rice (Song et al., 2007; Mao et al., 
2010; Li et al., 2011), and ZmGS3 and ZmGW2 in maize 
(Zea mays L.; Li et al., 2010; Mao et al., 2010). The iden-
tified QTL can be targeted for selection in a breeding 
population to increase selection efficiency (Lande and 
Thompson, 1990). Moreover, the cloning of causal genes 
increases our understanding of the genetic mechanisms 
underlying seed weight and size, which may in turn lead 
to improved selection methods.

Linkage mapping has been widely used to uncover 
genomic loci that control agronomic traits using a bipa-
rental population. The detected QTL, however, are lim-
ited to the assessment of the alleles that differ between 
the two parents of the population, and linkage map-
ping generally offers relatively low resolution, such that 
the markers could be 10–30 cM from the causal gene 
(Kearsey and Farquhar, 1998). An alternative method to 
map QTL is AM, also known as linkage disequilibrium 
(LD) mapping. The association between genotype and 
phenotype depends on the accumulation of historical 
recombination events in long-term breeding popula-
tions or natural populations (Zhu et al., 2008; Mackay 
et al., 2009). Hence, in AM, a larger number of markers 
are required to assure LD between markers and caus-
ative genes throughout the genome, thus improving the 
genetic resolution and enabling fine mapping. The QTL 
identified from the breeding population using AM can be 
directly used in selection for such QTL, and there is less 
chance of their linkage phase being disrupted by recom-
bination. Association mapping, however, has less power 
to detect the effect of rare variants (Morrell et al., 2012). 
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Another major constraint of AM is population structure 
that can lead to detection of spurious associations (Myles 
et al., 2009). A mixed model analysis that fits population 
structure and genetic relationship has been widely used 
to statistically reduce the number of false-positive signals 
(Yu and Buckler, 2006; Yu et al., 2006).

To determine the genetic architecture of seed weight 
and size, both linkage mapping in two biparental popula-
tions and AM in a breeding population with 1126 genets 
were performed in the present study. The objectives of 
this study were (i) to understand the variation of seed 
weight, area size, length, and width in the IWG breeding 
population; (ii) to identify QTL for seed weight and size 
in the breeding population; (iii) to detect QTL for seed 
weight and size in biparental populations; (iv) to compare 
the QTL identified by AM with the QTL regions detected 
in biparental mapping populations; (v) to investigate the 
frequency change of favorable QTL alleles and genotypes 
under selection and propose breeding strategies to stack 
favorable QTL alleles in the breeding germplasm.

Materials and Methods

Plant Materials
An IWG breeding population containing 1126 IWG gen-
ets from 58 families was used as the AM panel to analyze 
the genetic architecture of seed weight and size. Herein, 
we use the term “genet” to describe a genetically unique 
individual for outcrossing species that can be a single 
plant or cloned to represent multiple plants (Zhang et 
al., 2016). This is a representative population of the first 
recurrent selection cycle at the University of Minnesota. 
These IWG genets were planted in a spaced-plant nursery 
in 2011. Although plants comprising the AM panel were 
not clonally replicated, repeated measurement of seed 
weight and size were taken in 2012 and 2013. The details 
about the composition, organization, and management of 
the population were previously described (Zhang et al., 
2016). Two F1 biparental populations, one derived from a 
cross between two genets, C3-2331 and C3-2595, and the 
other from a cross between M35 and M26, were used to 
map QTL for seed weight and size (Kantarski et al., 2016; 
Zhang et al., 2016). C3-2331 was also the parent of 34 
genets in the breeding population. C3-2331 and C3-2595 
were from the third recurrent selection cycle at The Land 
Institute. These two parents have a large difference in seed 
weight, with C3-2331 producing larger seeds. This bipa-
rental population has 178 genets, including the two par-
ents. Two clonal replications were planted in St. Paul in 
2013 in a completely randomized design. Seed weight and 
size of the seeds harvested in 2014 and 2015 field seasons 
were measured. The other F1 biparental population, M35 
× M26, was composed of 265 genets. Two replications of 
234 genets were planted in Salina, KS, in 2012 and har-
vested and measured in 2013, 2014, and 2015. Three rep-
lications of 263 genets were transplanted in Providence, 
UT, in 2013, and three replications were harvested and 
measured in 2014 and two replications in 2015.

Seed Weight and Size Measurement
All the spikes on each plant were harvested by hand and 
threshed using a laboratory thresher (Wintersteiger LD 
350, Ried, Australia). About 200 seeds from each plant 
were mechanically dehulled (Wintersteiger, Ried, Austra-
lia). Fifty naked seeds per plant were weighed to calculate 
seed weight. These fifty seeds were scanned using an HP 
Scanjet 4600 with a lab bench as the black background. 
The pictures were analyzed using SmartGrain v.1.2 fol-
lowing the standard manual (Tanabata et al., 2012). Seed 
length, width, and area size were used as parameters for 
seed size. For the AM panel and population C3-2331 × 
C3-2595, correction for variability between environments 
was done by calculating best linear unbiased estimation 
(BLUE) of each genet using the MIXED procedure in 
SAS (v.9.3.1; Sallam et al., 2015). The adjustment for envi-
ronmental effects was described in detail in our previous 
study (Zhang et al., 2016). Broad-sense heritability h2 on 
a genet mean was calculated using the equation h2 = σg

2/
(σg

2 + σe
2/η), where σg

2 is the genetic variance, σe
2 is the 

error variance including genotype × environment and 
residuals, and η is the number of years. For the popula-
tion M35 × M26, best linear unbiased prediction (BLUP) 
of each genet were calculated using the lmer function in 
R package lme4 (R Core Team, 2014).

GBS Libraries, Sequencing, and SNP Calling
The AM panel was genotyped as previously described 
(Zhang et al., 2016). To increase the sequencing coverage 
and the number of markers for AM, ~10 genets from each 
of the 58 families were sequenced one more time using 
Illumina HiSeq 2000 (San Diego, CA). The sequence data 
from the AM panel were used to call SNP with the Uni-
versal Network-Enabled Analysis Kit (UNEAK) pipeline 
(Lu et al., 2013). The two biparental populations were 
sequenced and genotyped along with five other map-
ping populations used for developing a consensus map as 
previously described (Kantarski et al., 2016). Three filters 
were used for the SNP markers: (i) less than 30% missing 
data; (ii) χ2 test (p > 0.05) for heterozygotes, done to filter 
markers across all individuals, is based on the hypothesis 
that, in an allopolyploid (functional diploid) species, the 
sequencing counts of the two alternate tags of a SNP were 
equal in all heterozygotes; and (iii) the homozygote geno-
types with a sequencing count of less than five tags were 
considered as missing data. This filtering will decrease 
of the rate of false homozygote genotypes (Zhang et al., 
2016). Details about the genotyping of the two biparental 
populations were described in Zhang et al. (2016) and 
Kantarski et al. (2016).

Determining Marker Locations and Imputing 
Missing Data
The consensus genetic map, derived from seven mapping 
populations, was used to determine the locations of the 
SNP markers in the AM panel (Kantarski et al., 2016). 
The sequence data of the markers in the consensus map 
were converted into a local BLAST database, using the 
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BLAST command line tool makeblastdb. The marker 
sequences from the AM panel were aligned with the 
sequences of the markers in the consensus genetic map 
using the blastn command. Only identical markers in 
length and composition were considered as shared mark-
ers between the two populations and their map locations 
were used to analyze LD decay in the AM panel.

The missing data of GBS markers in the AM panel 
were imputed using LinkImpute, a software package 
based on a k-nearest neighbor genotype imputation 
method, LD-kNNi, which is designed for unordered 
markers (Money et al., 2015). LinkImpute provided fast 
and accurate genotype imputation for diverse and het-
erozygous accessions of apples (Malus domestica Borkh.), 
grapes (Vitis vinifera L.), and maize. Markers whose 
minor allele frequency (MAF) were larger than 0.05 were 
used for subsequent analysis.

LD Decay and Structure of the IWG Population
LD among mapped markers in the AM panel was esti-
mated using Haploview 4.2 (Barrett et al., 2005). The LD 
decay of r2 was described using the Hill and Weir for-
mula (Hill and Weir, 1988). We estimated the population 
structure using the model-based clustering algorithm of 
STRUCTURE (Pritchard et al., 2000). To avoid the overes-
timation of subpopulation divergence due to tightly linked 
SNP markers, we only used 467 GBS markers at spaced 
at approximately 5 cM intervals. Subgroups K = 1 to 10 
were tested and each was modeled 10 times with a burn-in 
period and number of replications equal to 10,000 using 
an admixture model in STRUCTURE. The optimal k was 
then determined using DeltaK calculated using Structure 
Harvester (Earl and Vonholdt, 2012). The Q matrices (K = 
2 and K = 3), containing the probability of membership of 
each cluster for each individual, were obtained using Soft-
ware CLUMPP (Jakobsson and Rosenberg, 2007) and then 
used as covariates in the mixed linear models (MLM).

Genome-Wide Association Study  
for Seed Weight and Size
The generalized linear model (GLM) and MLM in TAS-
SEL5.0 were used to test association between the phenotypic 
and genotypic data (Bradbury et al., 2007). Results from 
MLM were further verified using the R package, Genome 
Association and Prediction Integrated Tool (GAPIT; Lipka 
et al., 2012). The MLM for AM can be specified as follows:

y = Xβ + Qv + Zm + e  	   [1]

where y is a vector of phenotypes, β is a vector of fixed 
marker effects, v is a vector of the fixed effects of differ-
ent subpopulations, m is a vector of random effects caused 
by relatedness, e is a vector of residual effects, X is the 
marker matrix, Q is an incidence matrix containing mem-
bership proportions to cluster subpopulations identified 
by STRUCTURE analysis, and Z is the corresponding 
matrix that relate y to m. Association mapping was con-
ducted using filtered GBS markers with MAF ³ 0.05. The 

population Kinship matrix was calculated using TASSEL 
v.5, based on the scaled identity by state method (Endel-
man and Jannink, 2012). A MLM (without compression) 
was implemented using both GAPIT and TASSEL. The 
p-values were extracted from the outputs of GAPIT and 
TASSEL. The false discovery rate adjusted p-values in 
GAPIT were too stringent, so relaxed p-value levels were 
used as recommended (Pasam et al., 2012; Zegeye et al., 
2014). In the present study, a p-value of 0.0025 as the 
threshold of significant QTL was used. Only SNP markers 
showing significant p-values in two of the three analyses 
for BLUE, 2012 and 2013, were considered significant.

Multiple-linear regression was used to estimate the 
proportion of phenotypic variance explained by significant 
markers (R Core Team, 2014). The r2 value from LD analy-
sis or windows of 10 cM were used to define SNPs tagging 
a locus (Gao et al., 2016). Only the most significant SNP 
present within a 10 cM window was used to tag the QTL. 
The effects of most significant markers were extracted and 
considered as the effects of the corresponding QTL.

Linkage Mapping for Seed Weight and Size
For the C3-2331 × C3-2595 population, markers with 
<10% missing data were used to develop the genetic map 
(Kantarski et al., 2016; Zhang et al., 2016). This genetic 
map was used for QTL mapping using MapQTL6 (Van 
Ooijen, 2009). The integrated two-way pseudo-testcross 
approach was used to map QTL. The <lmxll> markers 
were used for the parent C3-2331, <nnxnp> markers were 
used for the other parent C3-2595, while <hkxhk> mark-
ers were not used. After splitting into a <lmxll> and a 
<nnxnp> dataset, we translated all markers to the popu-
lation type of double haploid. Then we combined the two 
parental datasets into a single dataset and appended the 
map of the second parent to the map of the first parent. 
This approach allows the use of cofactors of one parent in 
the searching for QTL in the other parent, thus increas-
ing the mapping power. The same procedure was used to 
map QTL in the M35 × M26 population.

Logarithm of odds (LOD) significance thresholds of 
linkage groups (LGs) were determined independently for 
each trait using the Permutation Test function with sig-
nificance threshold (α = 0.05) calculated using 1000 per-
mutations in MapQTL6. Interval mapping (IM) was used 
to detect major QTL. The closest marker at each QTL 
from IM was used as the cofactor in the multiple QTL 
model (MQM). After initial MQM mapping, we adjusted 
the set of cofactors based on the updated most likely 
positions of QTL, and repeated the MQM mapping. 
Several rounds of such MQM mapping were performed 
to obtain the best possible final solution, where no other 
segregating QTL were detected. Finally, restricted MQM 
(rMQM) mapping was used to identify the locations and 
regions of QTL. The left and right markers of QTL were 
determined based on the confidence interval calculated 
by LODmax – 1 at the estimated peak QTL position. The 
markers positioned in the consensus map were used to 
determine the locations of QTL.
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Response of QTL to Phenotypic Selection  
and Genomic Selection
In our previous study, independent validation was used 
to test the effectiveness of genomic selection (Zhang et 
al., 2016). Of 1126 genets in the breeding population (AM 
panel in the present study), 494 were used to train the 
genomic selection model for seed weight which was used 
to calculate the predicted values of the remaining 632 
genets. Based on the predicted values (genomic selection) 
and the observed phenotypic values (phenotypic selec-
tion) of 632 genets, the top 2% genets were selected. The 
number of QTL and the frequency of favorable genotypes 
and alleles were calculated. The top 0.5% genets were also 
selected to analyze the effect of selection intensity on the 
frequency of favorable QTL alleles.

Results
Variation in Seed Weight and Size in  
the Intermediate Wheatgrass Association 
Mapping Panel
Four morphometric parameters, seed weight, seed area 
size, seed length, and seed width were measured in a 
breeding population with 1126 genets (AM panel). Best 
linear unbiased estimation (BLUE) was used to describe 

the variation of seed weight and size in the present study 
(Supplementary Table S1). The seed weight was 8.32 mg 
on average, varying from 3.26 to 13.25 mg in the breed-
ing population. Different from wheat, IWG has long and 
thin seeds (Fig. 1). The seed length ranged from 4.52 to 
7.47 mm, seed width from 1.16 to 1.96 mm, and seed area 
size from 4.35 to 10.58 mm2 (Supplementary Table S1). 
All these traits had normal distributions in the breeding 
population. High broad-sense heritability was observed 
for all traits (0.85–0.91), indicating that genetic effects 
are the major determinant of the phenotypic variance on 
seed weight and size in IWG.

Discovery of Genetically-Mapped Markers  
for Association Mapping
From 17 lanes of sequencing, we obtained 2.5 billion 
reads for the AM panel. A total of 10,171 markers with 
<30% missing data from the population were identi-
fied through the UNEAK pipeline. Among them, 4731 
markers matched the mapped markers in the consensus 
genetic map of IWG with 100% identity (Fig. 2). These 
markers were located in 21 LGs, and the number of 
markers on each LG ranged from 101 for LG5 to 324 for 
LG20 (Supplementary Fig. S1). In total, 4731 markers 
covered the genetic map with 2655 cM (Kosambi). There 

Fig. 1. Typical wheat and intermediate wheatgrass seeds. (1) common wheat, ‘Chinese Spring’; (2–6) intermediate wheatgrass. (2) 
WG117210 with the median seed size in the breeding population; (3) WG112027 with the largest seed weight; (4) WG115812 with 
the smallest seed weight, length, and width; (5) WG115211 with the widest seeds; (6) WG110405 with the longest seeds. The samples 
were collected from 2013 growth season.
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are three markers for every 2 cM, on average. The LD 
decayed (defined by conventional r2 declining to below 
0.16) at an average distance of 1 cM (r2 = 0.1 at 2 cM; 
Supplementary Fig. S2). With an average marker density 
of three markers for every 2 cM, 4731 markers should be 
adequate to assure the LD between markers and QTL.

Association Mapping for Seed Weight and Size
We analyzed population structure using STRUCTURE. 
The DeltaK (K, the number of clusters) value was 80 for 
K = 2, 53 for K = 3, and <3 for K > 3 (Supplementary Fig. 
S3). The optimal number of K might be 1, 2, or 3 based 
on the DeltaK method. Software CLUMPP was used to 
obtain the Q matrices for K = 2 and K = 3. The Q matri-
ces were used as covariates in AM using a MLM (i.e., 
QK model). Whether we used the Q matrix with K = 3 
(3 subpopulations), K = 2 (2 subpopulations), or without 
Q matrix, the fit of the MLM model to the data was not 
improved for seed weight, seed width, seed length and 
area size, and the detected QTL have the same p-values 
shown in Manhattan plots (correlation coefficients, r > 
0.99 for seed weight, BLUE). Thus, the MLM model with-
out a Q matrix was used to fit the AM panel and all four 
traits for AM in both TASSEL and GAPIT.

After fitting the MLM model, we obtained 15 QTL 
for seed weight using TASSEL and 19 QTL using GAPIT 

with both additive and dominant models. Fourteen of 15 
QTL identified in TASSEL were shared with those from 
GAPIT (Supplementary Table S2). TASSEL has the capa-
bility of identifying additive effects and dominate effects 
after the additive model has been fitted. In the present 
study, TASSEL was used to identify QTL associated with 
seed weight and size. Combining the results from BLUE, 
2012 and 2013, we identified 15 QTL for seed weight, 18 
QTL for seed area size, 14 QTL for seed length, and 20 
QTL for seed width (Table 1, Fig. 3). In total, 33 QTL were 
identified for IWG seed weight and size in the AM panel. 
Three QTL were located on LG1, 4, 5, 20, and 21, two on 
LG3, 8, 9, 14, and 15. No QTL was identified on LG 6, 7, 
or 19. The QTL were named QSws.umn-LG1.1, QSws.umn-
LG1.2, QSws.umn-LG1.3 and such (Q for QTL; Sws for 
seed weight and size; umn for the University of Minne-
sota; LG1 for Linkage Group 1; and 1, 2, and 3 for occur-
rence numbers). The QTL were also assigned synonyms 
AM_1, 2, 3 et al., for ease of reference in this study.

Seven QTL for seed length were shared with seed 
weight, and nine QTL for seed width also contributed to 
seed weight (Fig. 4a, 4b). In total, 12 of the 15 QTL for 
seed weight were shared with either seed width or seed 
length. The shared QTL explained the high correlation 
between seed weight and seed length (r = 0.69) and seed 
width (r = 0.60). Similarly, high correlation between seed 
area size and seed length and seed width was observed, 
and area size shared 10 QTL with seed length and width, 
respectively. Seed weight and seed area size also showed 
high correlation (r = 0.83) and shared 10 QTL. Six QTL 
were shared between seed width and seed length, which 
also contributed to either seed weight or seed area size.

Fifteen QTL explained 37.6% of the variation for 
seed weight in the AM panel (Fig. 4a). All the QTL have 
small or moderate effects (£0.81 mg, QTL AM_24; Table 
2). Five QTL, AM_01, AM_06, AM_14, AM_29, and 
AM_33, showed overdominance where heterozygotes 
had higher effects than either homozygotes. The superior 
QTL alleles of AM_06, AM_14, AM_17 and AM_26 were 
homozygous in more than 50% of genets. The superior 
alleles of other QTL, however, were fixed in <15% of the 
population. If the superior alleles of seven QTL (AM_04, 
07, 11, 18, 20, 24, and 32) are fixed, we project that the 
seed weight of the breeding population will be increased 
by 3 to 4 mg on average, based on marker effects.

Twenty QTL explained 32.0% of the variation for 
seed width in the AM panel (Table 2). The superior alleles 
of QTL, AM_03, 05, 07, 24, and 32, were homozygous in 
<15% of genets in the AM panel. Fourteen QTL for seed 
length explained 25.1% of the variance of the population. 
The frequency of genets with homozygous QTL AM_10 
or AM_20 was <15%. Eighteen QTL for seed area size 
explained 38.2% of the variance of the population. The 
frequency of superior alleles of AM_06, 15, 19, 22, 26, 
and 30 is >70%. But QTL such as AM_04, 10, 18, 20, 
24, and 32 need to be selected and fixed in the breeding 
population to increase seed weight and size.

Fig. 2. Flow diagram of genotypic data analysis and association 
mapping pipelines. c2 test was performed based on the hypoth-
esis that, in diploid species, the sequencing counts of the two 
paired tags of a SNP were equal in all heterozygotes. The markers 
with p > 0.05 of c2 test were kept for subsequent analysis. All the 
homozygotes whose allele sequencing counts were <5 were con-
sidered as missing data. aLu et al., 2013; bZhang et al., 2016; cKa-
ntarski et al., 2016; dMoney et al., 2015; ePritchard et al., 2000; 
fBarrett et al., 2005; gBradbury et al., 2007; hLipka et al. (2012).



zhang et al.: seed weight & size in intermediate wheatgrass	 7 of 15

Table 1. Identification of 33 quantitative trait loci (QTL) for seed weight, area size, length and width using associa-
tion mapping.

ID† QTL‡ Marker LG§ Pos§

Seed weight Area size Seed length Seed width

BLUE§ 2012 2013 BLUE 2012 2013 BLUE 2012 2013 BLUE 2012 2013

AM_01 Ti_QSws.umn_1.1 TP38160 1 42.5 3.81¶ 3.48 2.89 – – – – – – – – –
AM_02 Ti_QSws.umn_1.2# TP96942 1 75.2 – – – – – – – – – 3.13 2.82 –
AM_03 Ti_QSws.umn_1.3 TP824692 1 137.0 – – – – – – – – – 3.45 2.72 3.19
AM_04 Ti_QSws.umn_2.1# TP583965 2 51.5 2.63 – 2.72 – – – – – – – – –

TP465797 2 52.0 – – – 2.67 – 2.99 – – – – – –
TP11430 2 55.9 – – – – – – – – – 3.96 3.58 2.91

AM_05 Ti_QSws.umn_3.1# TP91425 3 56.1 – – – – – – – – – – – 3.01
TP210957 3 57.3 – – – 3.26 3.69 – 3.12 3.45 – – – –

AM_06 Ti_QSws.umn_3.2 TP122486 3 77.4 2.65 3.11 – 4.03 4.36 2.53 3.45 3.22 2.89 – – –
TP608667 3 83.8 – – – – – – – – – 2.89 – 3.12

AM_07 Ti_QSws.umn_4.1# TP693406 4 90.2 – – – – – – 2.65 – 3.33 – – –
TP88976 4 93.5 2.7 – 3.19 – – – – – – – – –
TP361092 4 94.2 – – – – – – – – – 2.84 3.07 –

AM_08 Ti_QSws.umn_4.2# TP633718 4 114.0 – – – – – – – – – 2.58 – 2.52
AM_09 Ti_QSws.umn_4.3 TP576833 4 129.4 – – – – – – – – – 2.57 – 3.17
AM_10 Ti_QSws.umn_5.1 TP238848 5 16.9 2.52 – 2.84 – – – – – – – – –

TP889394 5 19.5 – – – 4.43 4.97 – 3.68 3.6 2.58 – – –
TP123986 5 25.2 – – – – – – – – – 3.49 – 4.93

AM_11 Ti_QSws.umn_5.2 TP708348 5 32.3 3.66 – 3.82 – – – – – – – – –
TP904298 5 37.6 – – – – – – – – – 5.22 4.77 4.50
TP134848 5 38.1 – – – 3.51 2.74 3.50 – – – – – –

AM_12 Ti_QSws.umn_5.3 TP892221 5 63.2 – – – – – – – – – 4.74 4.47 4.47
AM_13 Ti_QSws.umn_8.1# TP867911 8 77.7 – – – – – – 2.84 3 – – – –
AM_14 Ti_QSws.umn_8.2# TP227660 8 101.9 2.92 3.97 – – – – – – – – – –

TP70712 8 104.6 – – – – – – – – – 3.31 3.54 –
TP285170 8 106.9 – – – 3.06 3.15 – – – – – – –

AM_15 Ti_QSws.umn_9.1# TP225141 9 45.9 – – – 3.07 – 2.76 2.93 – 3.47 – – –
TP112961 9 53.4 – – – – – – – – – 2.74 3.12 –

AM_16 Ti_QSws.umn_9.2# TP604296 9 72.1 – – – – – – 3.12 – – – – –
AM_17 Ti_QSws.umn_10.1# TP898764 10 58.0 – – – – – – 2.81 – – – – –

TP252743 10 58.0 3.61 3.84 – – – – – – – – – –
AM_18 Ti_QSws.umn_11.1# TP299667 11 102.7 – – 3.33 – – 3.54 – – – – – –
AM_19 Ti_QSws.umn_12.1 TP218981 12 26.5 – – – 3.40 3.17 – 2.88 2.74 – – – –
AM_20 Ti_QSws.umn_13.1# TP197489 13 55.8 3.48 – 4.2 – – 2.68 – – 2.61 – – –

TP92513 13 57.2 – – – – – – – – – – – 3.00
AM_21 Ti_QSws.umn_14.1# TP807369 14 88.2 – – – – – – – – – 3.27 3.93 –
AM_22 Ti_QSws.umn_14.2 TP60998 14 119.6 – – – 3.71 3.00 2.80 – – – – – –
AM_23 Ti_QSws.umn_15.1# TP547331 15 26.3 – – – 3.48 2.72 2.63 – – – – – –
AM_24 Ti_QSws.umn_15.2# TP508717 15 44.3 2.75 3.05 – – – – – – – – – –

TP791825 15 49.5 – – – – – – – – – – 4.55 –
AM_25 Ti_QSws.umn_16.1# TP184967 16 66.9 – – – – – – – – – 3.08 3.21 –
AM_26 Ti_QSws.umn_17.1# TP678810 17 69.1 3.56 2.85 – 4.05 3.40 3.14 3.91 3.17 3.13 – – –
AM_27 Ti_QSws.umn_18.1# TP510011 18 73.2 – – – 2.84 2.67 – 2.6 2.71 – – – –
AM_28 Ti_QSws.umn_20.1# TP285481 20 76.5 – – – – – – – – – 2.86 – 2.75
AM_29 Ti_QSws.umn_20.2# TP883311 20 90.8 – – – – – – – 2.91 – – – –

TP73119 20 90.8 – 2.69 – 2.67 – 2.74 – – – – – –
AM_30 Ti_QSws.umn_20.3# TP18883 20 132.4 – – – 2.91 3.34 – 3.25 3.35 – – – –
AM_31 Ti_QSws.umn_21.1 TP23563 21 106.2 – – – 3.88 2.75 3.23 – – – 4.05 2.97 3.60
AM_32 Ti_QSws.umn_21.2# TP190628 21 120.4 – – – 3.03 3.23 – – – – – – –

TP23097 21 128.8 2.65 – – – – – – – – 3.20 2.69 2.68
AM_33 Ti_QSws.umn_21.3# TP30866 21 141.7 2.51 – 3.44 – – – – – – – – –

† The ID of QTL in the association mapping study; AM for association mapping.
‡ The QTL were named as QSws.umn-LG1.1, QSws.umn-LG1.2, QSws.umn-LG1.3 et al. (Q for QTL; Sws for Seed Weight and Shape; umn for the University of Minnesota; LG1 for Linkage Group 1; and 1, 2, and 3 for 
occurrence numbers).
§ LG, linkage group; Pos, position in the consensus genetic map; BLUE, best linear unbiased estimation.
¶ The–log10(p) values were shown in the table.
# QTL shared between the linkage mapping and association mapping studies.
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Linkage Mapping for Seed Weight and Size
The two parents, C3-2331 and C3-2595 were different in 
seed weight (13.20 vs. 9.79 mg, BLUE, p < 0.01), area size 
(11.53 vs. 9.09 mm2) and seed length (7.45 vs. 6.02 mm), but 
similar in seed width (1.92 vs. 1.89 mm). These four traits 
all showed normal distribution in the population (Supple-
mentary Fig. S4). Only two genets produced larger seeds 
than the superior parent C3-2331. However, 42.4% of the 
genets produced seeds with smaller seed weight than the 
inferior parent C3-2595, and 76.1% of the genets produced 
seeds with smaller seed width than both parents although 
both parents produced wide seeds (Supplementary Fig. S4).

In the C3-2331 × C3-2595 population, 1935 <lmxll> 
and <nnxnp> markers with less than 10% missing data 
were used for QTL mapping. Fourteen QTL for seed 
weight were detected, and the QTL LM_C01, C02, and 
C13 were observed in years 2014 and 2015 (Fig. 4c, Table 
3, Supplementary Table S3). Fourteen QTL were identified 
for seed area size. Ten QTL for seed length were mapped, 
and two QTL, LM_C05 and C07 were observed in both 
environments. Eleven QTL for seed width were detected 
and LM_C04, C06 and C11 were significant in two envi-
ronments. In total, 26 QTL were identified for seed weight 
and size. Among them, 19 were identified for more than 
one trait in at least one environment. Among 14 QTL for 
seed weight, nine were observed for seed area size, five 
for seed width, and three for seed length. All 14 QTL for 

seed area size were shared with other traits, but only three 
QTL were shared between seed length and seed width.

In the M35 × M26 population, the parents did not 
show large differences in seed weight or size. All the 
traits showed normal distribution in the population 
(Supplementary Fig. S4). In total, 17 QTL were identified 
for seed weight and size, of which 11 were detected for 
seed weight, eight for seed area size, 10 for seed length, 
and 5 for seed width, and 10 were detected for more than 
two traits. Among 11 QTL for seed weight, six were also 
detected for seed area size, four for seed length, and four 
for seed width. Only two QTL were shared between seed 
length and seed width (Table 3, Supplementary Table S4).

Thirty-eight QTL were detected from the two bipa-
rental populations, including five shared QTL. Each QTL 
explained only a small or moderate proportion of the 
phenotypic variance, varying from 2.6 to 12.7% (Table 3). 
Consistent with the results from AM, no major QTL were 
observed for seed weight and size. We observed 23 shared 
QTL between the biparental populations and the AM panel.

Frequency of QTL for Seed Weight was 
Increased by Phenotypic and Genomic Selection
A subset of the AM panel with 632 genets was used to 
analyze the frequency of the favorable homozygotes and 
the superior alleles of QTL for seed weight under the 
selection intensity of 2% (Fig. 5). Eleven of 15 QTL whose 
homozygotes showed different effect for seed weight were 

Fig. 4. High genetic overlap between seed weight, area size, length, and width. (a) Number of shared quantitative trait loci (QTL) and 
genetic correlation between traits in the association mapping study; (b) QTL overlap among traits in the association mapping study; (c) 
QTL overlap among traits in the biparental population C3-2331 × C3-2595; (d) QTL overlap among traits in the biparental population 
M35 × M26.
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Table 3. Identification of 38 quantitative trait loci (QTL) for seed weight, area size, length, and width from two 
biparental populations.

ID† QTL‡ LG§ Left§ Right§

Seed weight Area size Seed length Seed width

BLUE§ 2014 2015 BLUE 2014 2015 BLUE 2014 2015 BLUE 2014 2015

LM_C01 Ti_QSws.umn_2.1¶ 2 50.0 83.3 4.2# 5.3 5.2 – 3.9 – 4.8 – – 4.8 – –

LM_C02 Ti_QSws.umn_2.2 2 44.5 96.7 – 5.5 3.5 – – – – – – – – –

LM_C03 Ti_QSws.umn_3.1¶ 3 50.7 71.1 – – – – – – 5.2 5.9 – – – –

LM_C04 Ti_QSws.umn_4.1¶ 4 82.2 100.4 – – – – – 7.4 – – – 6.7 4.7 6.2

LM_C05 Ti_QSws.umn_4.2¶ 4 95.5 117.0 – – – 6.8 5.2 – 10.1 4.8 8.2 5.5 – –

LM_C06 Ti_QSws.umn_6.1 6 66.7 91.4 5.7 – 6.3 6.0 – 10.3 – – – 6.5 6.4 8.8

LM_C07 Ti_QSws.umn_6.2 6 79.5 127.5 – – – – – – 8.3 5.4 3.7 4.4 – –

LM_C08 Ti_QSws.umn_8.1¶ 8 66.4 87.8 – – – – – – – – – – 5.5 –

LM_C09 Ti_QSws.umn_8.2¶ 8 98.5 124.4 – – – – 5.2 – 4.0 9.0 – – – –

LM_C10 Ti_QSws.umn_9.2¶ 9 56.5 87.0 – – – – – – – – 4.0 – – –

LM_C11 Ti_QSws.umn_10.1¶ 10 42.2 75.8 6.5 – 7.3 6.0 – 6.5 – – – 9.2 6.5 9.8

LM_C12 Ti_QSws.umn_11.2 11 55.6 58.7 – 9.3 – – – – – – – – – –

LM_C13 Ti_QSws.umn_11.1¶ 11 93.7 100.4 4.5 5.9 3.3 – – – – – – 5.7 7.3 –

LM_C14 Ti_QSws.umn_12.2 12 72.6 99.6 – 10.2 – – – – – – – 4.4 – –

LM_C15 Ti_QSws.umn_13.1¶ 13 56.8 77.5 – – – – – – 6.8 – 12.6 – – –

LM_C16 Ti_QSws.umn_13.2 13 73.2 106.9 – – – – – – – – – – – 4.5

LM_C17 Ti_QSws.umn_14.3 14 6.4 64.7 6.6 – 5.1 4.7 – 6.6 – – – – – –

LM_C18 Ti_QSws.umn_14.1¶ 14 66.0 103.7 3.5 6.6 – 12.7 – 9.9 – – – – – –

LM_C19 Ti_QSws.umn_15.1¶ 15 0.0 28.9 – 4.4 – – – – – – – – – –

LM_C20 Ti_QSws.umn_15.3 15 59.7 116.0 – 4.1 – 5.2 5.6 – – 3.8 – – – –

LM_C21 Ti_QSws.umn_17.1¶ 17 25.7 60.6 5.3 – 9.4 – 5.2 – 3.5 4.6 – – – –

LM_C22 Ti_QSws.umn_18.1¶ 18 73.5 73.6 – – – 3.6 – – – – – – – –

LM_C23 Ti_QSws.umn_20.4 20 0.0 41.6 7.1 – 9.8 7.2 – – – – – – – –

LM_C24 Ti_QSws.umn_20.1¶ 20 41.6 76.5 – – – – – 7.1 – – 4.6 – – –

LM_C25 Ti_QSws.umn_20.3¶ 20 95.0 135.3 4.9 – 5.8 – – 4.9 – – – – – –

LM_C26 Ti_QSws.umn_21.3¶ 21 136.5 176.6 – – – – – – – – – – 5.7 –

LM_M01 Ti_QSws.umn_1.2¶ 1 59.8 85.5 6.5 – – 3.3 – – 3.4 – – – – –

LM_M02 Ti_QSws.umn_4.4 4 30.0 47.6 3.3 – – – – – – – – – – –

LM_M03 Ti_QSws.umn_6.3 6 34.1 78.2 – – – 2.9 – – 5.0 – – 2.6 – –

LM_M04 Ti_QSws.umn_6.2ᴪ 6 92.4 102.7 3.0 – – – – – – – – – – –

LM_M05 Ti_QSws.umn_6.4 6 145.3 176.1 – – – – – – 4.1 – – – – –

LM_M06 Ti_QSws.umn_7.1 7 56.2 99.6 3.8 – – 3.8 – – 6.5 – – – – –

LM_M07 Ti_QSws.umn_9.1¶ 9 33.1 47.8 5.4 – – 5.0 – – 6.8 – – 4.0 – –

LM_M08 Ti_QSws.umn_11.1¶†† 11 87.5 100.0 4.3 – – 5.4 – – – – – 6.6 – –

LM_M09 Ti_QSws.umn_15.2¶ 15 43.4 52.6 5.8 – – – – – – – – – – –

LM_M10 Ti_QSws.umn_16.1¶ 16 34.4 78.0 3.8 – – 3.6 – – – – – 7.9 – –

LM_M11 Ti_QSws.umn_17.1¶†† 17 45.1 69.1 – – – 4.1 – – 5.0 – – – – –

LM_M12 Ti_QSws.umn_18.1¶†† 18 40.6 73.6 – – – – – – 2.8 – – – – –

LM_M13 Ti_QSws.umn_19.1 19 56.5 82.7 5.6 – – – – – 4.8 – – – – –

LM_M14 Ti_QSws.umn_20.1¶†† 20 60.5 93.1 4.1 – – 5.2 – – – – – 4.0 – –

LM_M15 Ti_QSws.umn_20.2¶ 20 71.0 122.2 – – – – – – 5.0 – – – – –

LM_M16 Ti_QSws.umn_21.4 21 17.7 70.2 2.7 – – – – – – – – – – –

LM_M17 Ti_QSws.umn_21.2¶ 21 105.2 124.3 – – – – – – 3.5 – – – – –

† Identification of QTL in the linkage mapping study, LM for linkage mapping, C for population from C3-2331 × C3-2595, M for population from M35 × M26.

‡ The QTL were named as QSws.umn-LG2.1 and QSws.umn-LG2.2, QSws.umn-LG2.3 et al. (Q for QTL; Sws for Seed Weight and Size; umn for the University of Minnesota; LG2 for Linkage Group 2, respectively; and 
1, 2, and 3 for occurrence numbers).

§ LG, linkage group; Left, the location of the left marker of the QTL in the consensus genetic map; Right, the location of the right marker of the QTL in the consensus genetic map; The left and right markers of QTL 
were determined based on confidence interval calculated by one-LOD drop from the estimated QTL position; BLUE, best linear unbiased estimation.

# the percentage of variance explained by the QTL was shown in the table.

¶ QTL shared between the linkage mapping and association mapping studies.

†† QTL shared between the two biparental populations.
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included. For QTL AM_06, 14, 17, and 26, the frequency 
of superior homozygotes was larger than 65% in the initial 
breeding population (632 genets), while for the other seven 
QTL, the frequency of superior homozygotes was <16%. 
In the population of top 2% genets selected according to 
either predicted values or phenotypic data, the frequency 
of superior homozygotes for all the QTL was dramatically 
increased (>23%). The frequency of superior alleles was 
also increased to >46%. If the selected top 2% genets are 
used as parents under random mating (open pollination 
in green house), the theoretical frequency of the superior 
homozygotes for most QTL will be >21% (= 0.46 × 0.46) in 
the breeding population of the next selection cycle.

Discussion

Mapping QTL in a New Perennial Grain Crop 
Using Association Mapping and Biparental 
Linkage Mapping
To develop genomic tools for IWG improvement, we 
optimized the GBS methods for IWG (Zhang et al., 
2016), which is powerful in discovering genome-wide 
markers for any species. We then developed an inte-
grated genetic map with more than 10,000 GBS mark-
ers using seven biparental populations (Kantarski et al., 
2016). This genetic map provided the location of markers 
for AM, and facilitated the development of genetic maps 
for linkage mapping. In the present study, to determine 
the genetic architecture of seed weight and size, we 
used a breeding population with 1126 genets as the AM 
panel because substantial variation was observed in the 

breeding population derived from only a few selection 
cycles. The mapped QTL from the breeding population 
can be directly used to improve IWG. Linkage mapping 
was also performed using two biparental populations. 
The large number (23) of shared QTL between AM (33 
QTL) and linkage mapping (38 QTL) provided validation 
of the QTL identified for seed weight and size.

The power of AM depends on the degree of LD 
between the genotyped marker and the functional vari-
ant. The resolution of mapping QTL is a function of how 
quickly LD decays over distance (Myles et al., 2009). 
Therefore, the first step of AM is to analyze the extent 
of LD in the mapping population. The LD (r2 = 0.16) 
decayed within 1 cM in the AM panel. In total, 4731 
markers were discovered with an average of three mark-
ers every 2 cM. Thus, using 4731 markers we should be 
able to establish the linkage between markers and func-
tional variants. In our previous study, we reported that 
the LD (r2 = 0.2) decayed within 5 cM in the same popu-
lation (Zhang et al., 2016). This difference in LD decay 
may be due to (i) a smaller number of markers (only 1158) 
used for LD estimation in the previous study; (ii) a partial 
consensus map used in the previous study (2016 of 2891 
cM of the consensus map); and (iii) the inflated genetic 
distance of the genetic map, 4095 cM, from one biparen-
tal population in the previous study. The missing data 
(20%) of GBS markers used for genetic map development 
may cause misinterpretation of the sites and frequency of 
recombination, which was the primary cause of map dis-
tance inflation. In the present study, the consensus map 
with 10,029 markers was used as the reference map. The 

Fig. 5. The frequency of superior quantitative trait locus (QTL) genotypes or alleles for seed weight in three populations, that is, the orig-
inal breeding population and the populations with the top 2% best genets from genomic selection (GS) or phenotypic selection. (a) The 
frequency of homozygotes with favorable QTL in the three populations. (b) The frequency of favorable QTL alleles in the three popula-
tions. Of 1126 genets in the breeding population (AM panel in the present study), 494 were used to train the genomic selection model 
for seed weight, which was used to calculate the predicted values of the remaining 632 genets. In the present study, the predicted 
values of 632 genets were used to determine the 2% top best genets. To make the data comparable, here the breeding population is 
the 632 genets, and the top 2% genets were also selected from the 632 genets according to the phenotypic data. Eleven of 15 QTL 
were analyzed, which mainly showed additive effect in the breeding population. These QTL can be fixed in the breeding population by 
increasing the frequency of homozygotes with favorable alleles.
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genetic distance inflation was automatically adjusted dur-
ing the integration of seven genetic maps.

The mixed model approach has been widely used 
in AM studies to reveal important QTL. During AM 
there is a need to account for population structure and 
pair-wise genetic kinship (QK model) to minimize false 
positives (Yu et al., 2006). Moreover, including popula-
tion structure improved control of false positives only 
for traits highly correlated to population structure (Yu et 
al., 2006). The IWG breeding population was developed 
from the open pollination of all parents from the third 
selection cycle in The Land Institute (TLI_C3). The open 
pollination during the improvement of IWG helped to 
decrease the level of population structure (Zhang et al., 
2016). In the present study, we only observed a low level 
of population structure in the AM panel. When includ-
ing population structure, the Q matrix, as fixed effects 
in the model, we obtained similar mapping results as 
without including the Q matrix (r > 0.99 for seed weight), 
which indicated that, in this breeding population, the 
kinship or K matrix in the mixed model would be able to 
capture effects of population structure. Therefore, we did 
not include the Q matrix in our AM.

For IWG breeding, increasing seed weight is one 
of the major breeding objectives. The variation in seed 
width, length, and area size can contribute to the varia-
tion of seed weight (Tan et al., 2000), and there are high 
genetic correlations among these traits. The correlations 
could be derived from linkage where tightly linked loci 
control different traits and/or pleiotropy. In the present 
study, due to the limited number of markers and large 
genome size, it was difficult to distinguish linkage from 
pleiotropy in the AM and linkage mapping. Thus, we con-
sidered markers within ~10 cM as the same QTL within 
or between the QTL mapping studies. In AM, among 15 
QTL for seed weight, 13 were also detected for seed width, 
length, and area size. In linkage mapping, more than 64% 
of QTL for seed weight were shared with the other three 
traits. The high number of shared QTL not only explained 
the high genetic correlations (r > 0.60) between seed 
weight and area size, seed length, and seed width, but also 
provided solid evidence of the authenticity of the QTL 
effects. Moreover, when the top 2% of genets with larg-
est seed weight were selected, the frequency of superior 
alleles of these QTL were increased dramatically, which 
also indicated that these QTL contributed to seed weight.

Implications for Intermediate  
Wheatgrass Breeding
As a new perennial grain crop, IWG has been subjected 
to <10 breeding cycles. The population showed signifi-
cant variation for agronomic traits such as seed size, 
threshability, and plant height (Zhang et al., 2016). We 
observed high heritability (h2 > 0.85) of seed weight 
and size in the AM panel, indicating that the observed 
variation in seed weight and size were mainly controlled 
by genetic factors. More than 30 QTL for seed weight 
and size were identified using either AM or linkage 

mapping. These QTL showed moderate or small effects. 
It will be difficult to obtain large seed size by selection 
of only a few QTL, and multiple cycles of selection are 
likely needed to increase the frequency of favorable QTL 
alleles. This observation is consistent with the finding 
that seed weight was doubled after eight cycles of mass 
selection, but that each cycle of selection gave a small 
progressive increase (DeHaan et al., 2014). Among the 
11 QTL for seed weight we analyzed in the present study, 
most genets have the favorable homozygotes of only three 
to five QTL, with seven as the largest number in the AM 
panel. Several more cycles of selection will be required to 
fix the favorable QTL alleles in the breeding population.

The effect of selection intensity on the frequency of 
favorable QTL alleles was tested in the present study. 
We found that selecting 13 (top 2%) of 632 genets of the 
breeding population was sufficient to increase the fre-
quency of favorable QTL alleles and also to include all 
major QTL in the breeding population (Fig. 5). Higher 
selection intensity, say 0.5% (3 or 4 genets), was efficient 
to fix some QTL in one selection cycle; however, other 
QTL would be lost from the breeding population. Thus, 
if selection was made only for seed weight, for a breed-
ing population with 1000 to 2000 genets, ~20 best genets 
should be a good number to both increase the allele 
frequency and keep the diversity of QTL. In our breed-
ing program, however, we usually select for improving 
several traits. Usually 50 to 80 best plants, which perform 
best in one or several traits and better than the popula-
tion mean in all traits, were selected as parents for the 
next cycles of recurrent selection.

In the present study, the efficiency of phenotypic ver-
sus genomic selection was compared. Genomic selection, 
where a subset of the breeding population was used as 
the training population, and the remaining genets as the 
independent validation population, performed similarly 
with phenotypic selection in terms of the improvement 
in the frequency of favorable homozygotes and alleles 
(Fig. 5). None of the favorable QTL alleles were lost when 
using genomic selection. This finding was consistent with 
the high predictive ability (0.66 for seed weight) observed 
when using the genomic selection procedure (Zhang et 
al., 2016). Now, genomic-selection based recurrent selec-
tion is being used in the IWG breeding program at the 
University of Minnesota to improve seed weight, thresh-
ability, head weight, lodging resistance, and shattering 
resistance (Zhang et al., 2016).

The C3-2331 × C3-2595 population showed transgres-
sive segregation in seed weight and size. Even though both 
parents produced larger seeds than mean of the breed-
ing population, very few progeny performed better than 
the superior parent, C3-2331. One of the main reasons 
is that the parent C3-2595 provided few favorable QTL 
alleles, one of seven for seed area size and one of nine for 
seed weight (BLUE). Thus, dissecting the composition 
of QTL in parental genets will help to select genets with 
complementary QTL for biparental crossing to increase 
the chance to obtain genets with larger seed weight. In our 
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breeding program, we will perform AM to detect QTL for 
seed weight using the training population as part of the 
genomic selection process (Zhang et al., 2016). These QTL 
will be used to check the composition of favorable QTL 
alleles in parents. Based on the composition difference 
among parents, we will make specific biparental crosses or 
three-way crosses. Their progeny will be selected using the 
genomic selection procedure to increase the frequency of 
favorable alleles. Thus, combining AM and genomic selec-
tion, we should be able to accelerate selection of favorable 
QTL alleles for seed weight and size.

The grain yield IWG needs to increase for this crop 
to be attractive to growers and industry on a large scale. 
Further increases in IWG production will be facilitated 
by the identification and characterization of genes or loci 
controlling grain yield. As one of the major components 
of grain yield, seed weight, and seed size were investigated 
in the present study. We determined the genetic archi-
tecture of seed weight and size using AM in a breeding 
population with 1126 genets and linkage mapping in two 
biparental populations. In total, 33 QTL were identified for 
seed weight and size in the breeding population, of which 
23 were detected in biparental populations. All these QTL 
were mapped on the consensus map of IWG. This study 
provides a reference of QTL for seed weight and size in 
IWG. The identification of these QTL makes marker-
assisted selection feasible for IWG. Specifically, breeders 
can select parents with different composition of QTL, 
make crosses, and then select progeny with larger seed 
weight, which will increase selection efficiency and genetic 
gain in seed weight improvement. Thus, combining AM, 
marker-assisted selection for parents, and genomic selec-
tion for progeny, we can develop IWG varieties for large 
areas of commercial production within a few years.
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Supplementary Fig. S1. The number of markers in each linkage 

group and the length of linkage groups. The length of 
linkage groups were shown in Kosambi centiMorgans.

Supplementary Fig. S2. The rate of LD decay of the breeding 
population of intermediate wheatgrass. The LD among mark-
ers was estimated using Haploview 4.2 (Barrett et al., 2005). 
The Hill and Weir formula (Hill and Weir, 1988) was used to 
describe the LD decay of r2.

Supplementary Fig. S3. Population structure of intermediate 
wheatgrass breeding population using STRUCTURE. a) Mean 
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