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1. Introduction 

In this chapter we propose to discuss the role of K+ ion channels in stimulating 
vasodilatation by altering the membrane potential of vascular smooth muscle cells. We 
present evidence that the K+ channels are modulated by a direct action of non-steroidal anti-
inflammatory drugs (NSAIDs) to activate the K+ ion channels. 

The primary cellular action of non-steroidal anti-inflammatory drugs (NSAIDs) is thought 

to be through inhibition of pathways involving cyclo-oxygenase (COX). COX catalyses the 

conversion of arachidonic acid to prostaglandin endoperoxides (Vane, 1971) which are the 

precursors of both prostacyclin and thromboxane A2 (Moncada et al., 1976). Such an 

action of NSAIDs may be expected to be vasoconstrictive and lead to increased blood 

pressure, which is a possibility that has been suggested by meta-analyses of clinical 

studies (Johnson et al., 1994). However, early reports indicated that chronic 

administration of indomethacin or other NSAIDs had varying effects on blood pressure 

(Lopez-Ovejero et al., 1978; Ylitalo et el., 1978). For example, whilst indomethacin and 

naproxen are associated with increases in blood pressure, NSAIDs such as sulindac, 

aspirin, piroxicam or ibuprofen have negligible effects (Pope et al., 1993). Moreover, in a 

direct study of the effects of NSAIDs in patients with mild essential hypertension, it was 

found that ibuprofen increased systolic blood pressure but neither aspirin nor sulindac 

had any significant effect on systolic or diastolic blood pressure (Minuz et al., 1990). In 

this chapter we report our investigations of the hypothesis that the variable effect on 

blood pressure was due to NSAIDs inducing vasodilatation. 
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Vasodilatation can be mediated by contributions from any one of several independent 
cellular mechanisms which include release of COX metabolites and nitric oxide (NO), 
release of an endothelium-derived hyperpolarising factor (EDHF), or activation of ATP-
sensitive potassium channels (Feletou & Vanhoutte, 2000; Pinheiro & Malik, 1993). In 
addition, the particular mechanism underlying the eventual vasodilatation can be related to 
its initiating chemical mediator. For example, endothelium-dependent vasorelaxation does 
not appear to be mediated by COX products and is critically dependent on NO (Pinheiro & 
Malik, 1993), although it may also involve cell hyperpolarisation via the opening of ATP-
sensitive potassium channels (Sakuma et al., 1993). Some authors have suggested that the 
particular type of potassium channel that is activated to produce cell hyperpolarisation may 
not be confined to the classical ATP-sensitive channel (Seigel et al., 1992). For example, the 
NO-independent coronary vasodilator effect of bradykinin was found to utilise a Ca2+-
activated potassium channel (Fulton et al., 1994). 

It has been reported that NSAIDs of the fenamate family, which include mefenamic acid, 
niflumic acid and flufenamic acid, activated Ca2+-activated potassium channels (Farrugia et 
al., 1993; Ottolia & Toro, 1994). We examined the possibility, using patch-clamp 
electrophysiology, that other NSAIDs may also activate Ca2+-activated potassium channels 
in aortic smooth muscle cells since not all NSAIDs have been shown to cause significant 
increases in blood pressure. Furthermore, we used the enantiomers of flurbiprofen to 
separate the COX-mediated effects from those related to potassium channel activation in 
organ bath experiments where we recorded constrictor responses of the aorta to 
phenylephrine. It is important to note that R-flurbiprofen has negligible effects on COX 
pathways compared to S-flurbiprofen, which does inhibit COX pathways (Peskar et al., 
1991). Also, R-flurbiprofen does not convert to S-flurbiprofen in biological systems, unlike 
an enantiomer such as R-ibuprofen. We report that low concentrations of several NSAIDs 
were found to activate a Ca2+-sensitive and ATP-activated K+ channel (KAC) in vascular 
smooth muscle cells, leading to cell hyperpolarisation and vasodilatation. Our results 
indicate that several NSAIDs may cause vasodilatation which would explain the clinical 
reports that some NSAIDs have negligible effects, or even reductions, in blood pressure. 

2. Experimental procedures and methods 

To investigate the effect of NSAIDs, we correlated the results from patch-clamp 
electrophysiology and physiological organ-bath investigations utilizing rings of vascular 
tissue. The results from experiments using those techniques were used to test our hypothesis 
that the variable effect on blood pressure which is reported in the clinical literature is due to 
the spectrum of potency of NSAIDs to activate K+ channels (thereby inducing 
vasodilatation) in synergy with the classical NSAID effect on intracellular pathways that 
involve cyclo-oxygenase (which usually results in a vasoconstriction). 

For the experiments we used the following drugs: acetylcholine, phenylephrine, ATP, ADP, 
AMP, aspirin, indomethacin, flufenamic acid, niflumic acid, mefenamic acid, pinacidil, TEA, 
and collagenase were purchased from Sigma. Porcine pancreatic elastase was from 
Calbiochem-Novabiochem (Sydney). Glibenclamide was from RBI (Natlick MA, U.S.A.). R- 
and S- isomers of flurbiprofen were a kind donation from the Boots Company (UK) by Dr 
Ken Williams, St Vincent’s Hospital Sydney. Other chemicals used for the intracellular, 
extracellular, and Krebs bicarbonate solutions were of AR grade. 
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2.1 Animal studies 

This protocol was approved by the Garvan Institute of Medical Research/St Vincent’s 
Hospital Animal Ethics Committee. The study complied with the guidelines published by 
the Australian National Health and Medical Research Council for the care and conduct of 
experiments using animals in research, and conformed to the Guide for the Care and Use of 
Laboratory Animals published by the US National Institutes of Health (NIH Publication No. 
85-23, revised 1996). 

2.2 Preparation of RASM myocytes for patch-clamp electrophysiology 

New Zealand white rabbits of either sex, weighing 1 to 2 kg, were anaesthetised with 
pentobarbital sodium via an ear vein (Nembutal, Boehringer Ingelheim, 45 mg/kg). Heparin 
(500 Units) was infused at the same time. A short section of the thoracic aorta was dissected 
and the vessel was washed several times in Hanks Balanced Salt Solution (GIBCO, Life 
Technologies, Melbourne) and incubated in 1000 U/ml collagenase (Type II, Sigma #C6885) 
for 30 minutes at 37°C to remove endothelial cells. Strips of media were carefully peeled off 
using jewellers forceps, diced and incubated in a solution containing 1000 U/ml collagenase 
(Type II) and 60 U/ml porcine pancreatic elastase (Calbiochem-Novabiochem, Sydney) for 
2-3 hours at 37°C with periodic trituration. Either the tissue explants or dispersed cells were 
seeded in Dulbecco’s Modified Eagles Medium (DMEM) supplemented with 100 U/ml 

penicillin (GIBCO), 100 g/ml streptomycin (GIBCO), 4 mM fresh L-glutamine (GIBCO) 

and 10% foetal bovine serum (PA Biologicals, Sydney). The cells (2105/well) at passage 2-3 
were plated onto glass coverslips at least 3 days before an experiment and serum-deprived 
for 24 hours in 4% Monomed (Commonwealth Serum Laboratories, Melbourne) in DMEM. 
Cultured cells expressed smooth muscle actin and were negative for Factor VIII:RAg, an 
endothelial cell marker. 

2.3 Recording and analysis of K
+
 ion channels using patch-clamp electrophysiology 

Standard patch-clamp techniques that we have used previously on cardiovascular cells 
(Martin et al., 1994) were used to record single ion channel activity, at 37°C, in the inside-out, 
cell-attached and whole-cell configurations from the rabbit aortic smooth muscle (RASM) cells. 

The channel currents were amplified and filtered at 1kHz (3dB point) using an Axopatch 1D 
amplifier (Axon Instruments, Union City, CA, U.S.A.) and sampled on-line by a 
microcomputer (IBM 486 compatible) using commercial software and associated A/D 
hardware (pClamp 6.0/Digidata 1200, Axon Instruments and Scientific Solutions Inc., Foster 
City, CA, U.S.A.). The single-channel open probability was calculated from the areas of 
Gaussian curves fitted to amplitude histograms compiled from 2 minute channel recordings. 
We calculated changes in the channel activity following the addition of NSAIDs by dividing 
the open probability in the presence of the drug by that recorded before the drug was applied. 

All data are presented as meanSE with the number of observations in parenthesis (n). 

Ion currents are referred to the trans-patch potential (Vm). For cell-attached patches, this was 

determined from the pipette potential (Vp), cell resting potential (Em) and the liquid junction 

potential (EL) between the bath and pipette solutions. The liquid junction potential (EL) was 

calculated using commercial software (Barry, 1994), and was typically around 4mV.  

Thus 
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 m m p LV (E V ) E    (1) 

For inside-out patches, the Vm was only determined by Vp and EL, with Em=0 in equation (1), 
thus 

 m p LV V E   (2) 

For recording from inside-out membrane patches an extracellular solution was used in the 
pipette and for superfusion of the cells during seal formation, which contained (mM): NaCl 
(130), KCl (4.8), MgCl2 (1.2), NaH2PO4 (1.2), N-[2-Hydroxyethyl]piperazine-N’-[2-
ethanesulphonic acid] (HEPES) (10), glucose (12.5), CaCl2 (1.0), and Bovine Albumin 
(0.5mg/ml, fraction V, Sigma, #A7888) (pH=7.4, with NaOH). After a gigaseal was formed 
this extracellular superfusing solution was replaced with an intracellular solution that 
contained (mM): KCl (140), MgCl2 (1.2), ethylene glycol-bis (b-amino ethyl ether) tetraacetic 
acid (EGTA) (5), and HEPES (10) (pH=7.2, with KOH) and an inside-out membrane patch 
was excised from the cell. The various NSAIDs were added to this intracellular solution. 

2.4 Recording and analysis of the contractile properties of arterial rings 

Eight 2 mm wide rings were cut from sections of the thoracic aorta of the rabbits. In some 
experiments the endothelium was removed by gently rotating a wooden swab stick in the 
lumen of the vessel. Removal of the endothelium was confirmed by the absence of 
acetylcholine (1M) induced relaxation in rings that had been pre-constricted with 

phenylephrine (PE) (1M). The 8 rings were suspended in individual 10 ml water-jacketed 
(37°C) organ baths filled with freshly prepared Krebs-Bicarbonate solution, which had the 
following composition (mM): NaCl (118), KCl (4.7), KH2PO4 (1.2), MgSO4.7H2O (1.18), 
glucose (5.0), NaHCO3 (25.0), CaCl2.2H2O (2.54). The aortic rings were pre-loaded with a 
basal tension of 2.00±0.05g. Isometric tension in each ring was measured using a Grass FT03 
force transducer (Quincy, MA, USA), the output of which was multiplexed and sampled on-
line by a microcomputer (Macintosh IIsi) using commercial software and associated A/D 
hardware (MACLAB, Analog Digital Instruments, Sydney, Australia). 

The design of the organ bath experiments were as follows: (i) challenge with a submaximal 
contractile dose of KCl (40mM), which was used to normalise all subsequent responses to 
PE in the presence of the NSAID; (ii) determine a PE dose-response curve from each 
vascular ring in order to produce a control response. After suitable washout and re-
equilibration periods of 30 minutes, the NSAIDs were added to the organ baths 15 minutes 
prior to subsequent challenge with PE; (iii) time mediated changes in responsiveness of the 
vascular rings were analysed by repeated challenges/trials with PE during a complete 
experiment; (iv) PE and NSAIDs were added to the organ baths in cumulative 
concentrations; (v) concentrations noted in all figures reflect the final concentration in the 
organ baths. 

Contraction of vascular rings is presented either as tension (g),  or a contraction relative to 
the contraction elicited by KCl (40mM) which was expressed as a percentage (%). 
Differences between dose-response curves were assessed using 2-way analysis of variance 
(ANOVA). Further comparisons of individual data-points were tested using unpaired 
Student’s t-tests with the appropriate Bonferroni correction for multiple comparisons (SPSS 
v10.0, Chicago, Ill). 
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Separate stock solutions of phenylephrine (10mM), acetylcholine perchlorate (10mM), and 
KCl (4M) were prepared with deionized water (Milli-Q, Millipore Corporation, Bedford 
MA, USA). Subsequent dilutions for each drug were made with freshly prepared Krebs 
bicarbonate solution. R- and S-flurbiprofen were prepared as a 100mM stock with 0.1M 
Na2CO3 solution, and subsequently diluted with freshly prepared Krebs bicarbonate 
solution. As a control, no change in contraction was recorded after exposing rabbit aortic 
rings to Na2CO3 (0.1M) for 15 minutes. 

3. Results from experiments 

In summary, the following results of the experiments describe a large-conductance K+ 
channel in smooth muscle cells that is activated by intracellular ATP and Ca2+. 
Furthermore, the K+ channel is activated by some NSAIDs and pinacidil. We have 
designated this channel KAC, since it does not have the normal characteristics of the 
classical ATP-sensitive K+ channel, and the KAC channels have additional features 
compared to the previously reported maxi-K channels (Kuriyama et al., 1998). The RASM 
smooth muscle cells were hyperpolarised by aspirin, an NSAID that potently activated the 
KAC channel. Both R- and S-flurbiprofen antagonised constrictor responses of the rabbit 
aorta to PE, suggesting that relaxation occurred via a mechanism other than inhibition of 
cyclo-oxygenase pathways. Our results allow us to conclude that NSAIDs are potent 
openers of a Ca2+-activated phosphorylation-dependent potassium channel in vascular 
smooth muscle cells leading to cell hyperpolarisation and vessel dilatation. The activation 
of potassium channels is thought to be significant in controlling excitability of vascular 
smooth muscle cells and regulation of myogenic tone (Brayden & Nelson, 1992), an idea 
that has been corroborated in coronary arteries (Scornik et al., 1993) and in rabbit aorta 
(Gelband & McCullough, 1993). The KAC channel that we describe in this paper thus 
provides a novel target to control excitability of vascular smooth muscle cells and regulate 
myogenic tone. 

3.1 Characteristics of K
+
 ion channels in RASM cells 

The predominant channel recorded from inside-out membrane patches, with a NaCl-rich 
extracellular pipette and a KCl-rich intracellular bath solution, had a single-channel 

conductance of 1286 pS (n=31) as shown in Figure 1.  

Under these conditions the reversal potential of the current-voltage relation was 60 mV 
(95% confidence interval of -69 mV to -52 mV) indicating that it was permeable to potassium 

ions (EK = 85 mV). This was confirmed in experiments with 7 other patches where half of 
the KCl in the superfusing intracellular (bath) solution was replaced with K-gluconate. As 
would be expected for a mainly K+-permeable channel, neither the reversal potential 

(47 mV with KCl and 49 mV with K-gluconate) nor the single-channel conductance 

(1409 pS with KCl and 14613 pS with K-gluconate) was altered following this ion 
substitution. With symmetrical KCl solutions bathing the inside-out patches, the single-

channel conductance was 25918 pS (n=6) and the reversal potential shifted toward zero 
(+4.3 mV). 

The pooled distribution of channel openings from 11 inside-out patches with the pipette 
filled with the extracellular solution and the bath filled with the intracellular solution and no 
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applied voltage (trans-patch potential of 0mV) was fitted by a single exponential with a time 

constant of 2.70.0 ms (2,567 events). The average single-channel open probability from 

these inside-out patches was 0.01250.0053 (n=11). The single-channel open probability was 

increased by 6421 % (n=4) when the concentration of Ca2+ was increased from <0.001 M to 

1 M at the cytosolic face of the inside-out patches. The open probability of the channel was 
also increased following the addition of adenosine nucleotides (all 5 mM), with the sequence 
of potency adenosine 5’-triphosphate (ATP) > adenosine 5’-diphosphate (ADP) > adenosine 
5’-monophosphate (AMP) (Figure 2). 

 

 

Fig. 1. Current-voltage relation of the predominant KAC channel in rabbit aorta vascular 
smooth muscle cells recorded from inside-out membrane patches. The pipette solution 
(extracellular) contained (mM): NaCl (130), KCl (4.8), MgCl2 (1.2), NaH2PO4 (1.2), HEPES 
(10), glucose (12.5), CaCl2 (1.0), and Bovine Albumin (0.5mg/ml) (pH=7.4, with NaOH). The 
superfusing solution (intracellular) contained (mM): KCl (140), MgCl2 (1.2), EGTA (5), and 
HEPES (10) (pH=7.2, with KOH). The single-channel conductance with these solutions is 

1286 pS (n=31). 

The activation of the 259 pS K+ channel by ATP and Ca2 led us to use the abbreviation 
KAC for this channel. The open probability of the KAC channel was unaffected when the 

ATP-sensitive K+ channel blocker glibenclamide, in the range from 3 M to 60 M, was 
added to the cytosolic face of inside-out membrane patches. Pinacidil, which is known to 
activate the classical ATP-sensitive K+ channel, also increased the open probability of the 
KAC channel (Figure 3). 

www.intechopen.com



Role of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) in Modulating  
Vascular Smooth Muscle Cells by Activating Large-Conductance Potassium Ion Channels 289 

 

Fig. 2. Activation of the KAC channel in RASM by adenosine nucleotides (all 5mM) applied 
to the cytoplasmic face of inside-out membrane patches. (a) superfusing solution alone, (b) 
ATP added to superfusing solution, (c) washout with superfusing solution, (d) ADP added 
to superfusing solution, (e) washout with superfusing solution, (f) AMP added to 
superfusing solution. The pipette solution (extracellular) contained (mM): NaCl (130), KCl 
(4.8), MgCl2 (1.2), NaH2PO4 (1.2), HEPES (10), glucose (12.5), CaCl2 (1.0), and Bovine 
Albumin (0.5mg/ml) (pH=7.4, with NaOH).The superfusing solution (intracellular) 
contained (mM): KCl (140), MgCl2 (1.2), EGTA (5), and HEPES (10) (pH=7.2, with KOH). 
The activation of the channel was in the sequence ATP > ADP > AMP. The trans-patch 
potential was 0 mV and channel openings are upward, with the zero-current (baseline) level 
indicated with the solid arrow. Scale bars are shown between traces (b) and (c). Vertical bar 
is 15pA. Horizontal bar is 400 ms. 
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Fig. 3. Effects of (A) pinacidil (n=5), (B) flufenamic acid (n=6), (C) niflumic acid (n=4) and 
(D) mefenamic acid (n=4) on the open probability of the KAC channel in RASM. In all 
panels the y-axis represents KAC channel activity, which was calculated by dividing the 
open probability in the presence of the drug by that recorded before the drug was applied. 

In all panels the x-axis represents concentration of the drug in M. 

3.2 Effects of NSAIDs on KAC ion channels 

There was a dose-dependent increase in the open probability when either aspirin, R-

flurbiprofen, S-flurbiprofen, indomethacin or flufenamic acid was added to the cytosolic 

face of inside-out membrane patches (Figures 3, 4). 
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Aspirin was the most potent of these NSAIDs, with the order of potency being 
aspirin > R-flurbiprofen = S-flurbiprofen > indomethacin > flufenamic acid. Those 
NSAIDs were more potent activators of the KAC channel than pinacidil (Figure 5). The 
NSAIDs niflumic acid and mefenamic acid were tested, but had no effects on the open 
probability of the KAC channel. 

 

Fig. 4. Effects of (A) aspirin (n=5), (B) R-flurbiprofen (n=6), (C) S-flurbiprofen (n=4) and 
(D) indomethacin (n=4) on the open probability of the KAC channel in RASM. In all panels 
the y-axis represents KAC channel activity, which was calculated by dividing the open 
probability in the presence of the NSAID by that recorded before the NSAID was applied. In 

all panels the x-axis represents concentration of the drug in M. 
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Fig. 5. Activation of the KAC channel in RASM by the NSAIDs (a) aspirin, (b) R-

flurbiprofen, (c) S-flurbiprofen, and by (d) pinacidil applied to the cytosolic face of inside-

out membrane patches. The trans-patch potential was 0 mV and channel openings are 

upward, with the zero-current (baseline) level indicated with the solid arrow. In all panels 

trace C represents the control condition of no drug added to the superfusing solution and 

trace T represents the recording when the NSAID was added to the superfusing solution. 

For recording from inside-out membrane patches an extracellular solution was used in the 

pipette which contained (mM): NaCl (130), KCl (4.8), MgCl2 (1.2), NaH2PO4 (1.2), N-[2-

Hydroxyethyl]piperazine-N’-[2-ethanesulphonic acid] (HEPES) (10), glucose (12.5), CaCl2 

(1.0), and Bovine Albumin (0.5mg/ml, fraction V, Sigma, #A7888) (pH=7.4, with NaOH). 

The superfusing solution contained (mM): KCl (140), MgCl2 (1.2), ethylene glycol-bis (b-

amino ethyl ether) tetraacetic acid (EGTA) (5), and HEPES (10) (pH=7.2, with KOH) and 

an inside-out membrane patch was excised from the cell. Vertical bar is 15pA. Horizontal 

bar is 400 ms. 
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3.3 Effects of NSAIDs on membrane potential 

The activation of the KAC channel by the NSAIDs may be expected to hyperpolarise the 
smooth muscle cells. To test this hypothesis, we recorded the membrane potential while 

current-clamping (whole-cell mode) the smooth muscle cells used after adding aspirin 1 M 
extracellularly. This experiment was repeated on 12 cells that satisfied the criteria of 
remaining in a stable whole-cell configuration for at least 5 minutes with no depolarising 

shifts in membrane potential, and the membrane potential was at least 10 mV at the end of 
this stabilisation period.  

The average resting membrane potential for the 12 cells was 19.41.9 mV. After 5 minute 

exposure to aspirin 1 M in the superfusing solution, the membrane potential was 
hyperpolarised in the majority (10/12) of these cells. The average hyperpolarisation shift in 

membrane potential induced by aspirin was by 5.81.4 mV (n=12), which was significant 
when tested with a Wilcoxon Rank-Sum test (p=0.001). 

3.4 Effects of NSAIDs on contractile properties of rabbit aorta 

The patch-clamp electrophysiology results indicate that the activation of the KAC channel 
leads to hyperpolarisation of the rabbit aorta smooth muscle cells, which may also lead to 
relaxation of the intact blood vessel. We tested this hypothesis by measuring the effect of 
both the R- and S- enantiomers of flurbiprofen (1 mM) on the contraction of rings of rabbit 
aorta in response to cumulative concentrations of PE. We utilised enantiomers of 
flurbiprofen in these experiments so that any effects due to KAC channel activation could be 
distinguished from effects on cyclo-oxygenase pathways. Both enantiomers of flurbiprofen 
activated the KAC channels. It is important to note that R-flurbiprofen has negligible effects 
on cyclo-oxygenase pathways compared to S-flurbiprofen, which does inhibit these 
pathways (Peskar et al., 1991). Also, R-flurbiprofen does not convert to S-flurbiprofen in 
biological systems, unlike an enantiomer such as R-ibuprofen. 

Both R- and S- enantiomers of flurbiprofen shifted the PE dose-response curve to the right 

and reduced the maximum contraction induced by PE (Figure 6). The EC50 values were 

calculated from non-linear regression of the data in figure 6 using a Gompertz 3-parameter 

sigmoidal equation (SigmaPlot 2000, Chicago, Ill) and are shown in table 1. The effect of 

either R- or S- flurbiprofen was to increase the EC50 value for PE-induced contraction by 

approximately 2½ times. The effect of flurbiprofen (R- and S- combined) was to increase 

significantly the EC50 for the PE-induced contraction to 527.0 ± 5.5 nM from the control 

value of 214.4 ± 9.2 nM (p<0.05, t = 23.976, Student’s t-test). 

Ring treatment 
R-flurbiprofen S-flurbiprofen 

control treatment control treatment 

+ endothelium 207.0 517.6 (2.50) 241.5 518.0 (2.14) 

– endothelium 200.0 533.0 (2.67) 209.1 539.5 (2.58) 

Table 1. The effect of R- or S-flurbiprofen on the phenylephrine EC50 derived from rabbit 
thoracic aortic rings, with (+) or without endothelium (-).Values shown in brackets indicate 
magnitude of increase from control to treatment EC50. The calculated EC50 (nM) is derived 
from the data shown in figure 6, using non-linear regression of a Gompertz 3-parameter 
sigmoidal equation (SigmaPlot 6.0). 
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Fig. 6. Effect of enantiomers of flurbiprofen on pre-constricted rings dissected from rabbit 
aorta. (a) R-flurbiprofen added to rings with intact endothelium, (b) R-flurbiprofen added to 
rings with no endothelium, (c) S-flurbiprofen added to rings with intact endothelium, and 
(d) S-flurbiprofen added to rings with no endothelium. Both R- and S-flurbiprofen 
antagonised the constrictor responses of the aorta to PE. Note that, in comparison to S-
flurbiprofen, R-flurbiprofen has a very weak effect on cyclo-oxygenase pathways. The data-
points represent mean±SE. In all panels the x-axis represents the PE concentration (log M) 
and the y-axis represents the relative contraction (%) of the aortic rings relative to the 
contraction to KCl (40mM). 

4. Discussion and conclusion 

We describe a large conductance Ca2+-activated K+ channel (KAC) in RASM that has the 
unusual property of being activated by ATP applied intracellularly. Investigations of a 
similar channel in smooth muscle cells of the rat pulmonary artery suggested that 
phosphorylation is important for its activation (Robertson et al., 1992). A subsequent report 
from the Kozlowski research group described this type of channel being present in isolated 
smooth muscle cells from the aorta, mesenteric and basilar arteries of the rat (Hartley & 
Kozlowsky, 1996). Such large ATP- and Ca2+-activated K+ channels may represent a link 
between cellular metabolism and hypoxia (Pinheiro & Malik, 1993), since the glycolysis 
inhibitor, 2-deoxy-D-glucose, has been shown to inhibit K+ currents in rat pulmonary 
arterial smooth muscle cells (Hartley & Kozlowski, 1996). 
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The novel results that we present are that KAC is activated by several NSAIDs, including R-
flurbiprofen, S-flurbiprofen, indomethacin and aspirin. In contrast to the previously 
published effect of fenamates to activate large conductance Ca2+-activated K+ channels 
(Farrugia et al., 1993; Ottolia & Toro, 1994) or to block classical ATP-sensitive K+ channels 
(Li et al., 2007), the KAC channels that we report are not sensitive to mefenamic acid, niflumic 
acid nor flufenamic acid. This insensitivity to fenamates and a sensitivity to intracellular 
ATP distinguish the KAC channels from the large-conductance Ca2+-activated channels 
described previously (Farrugia et al;? 1993; Ottolia & Toro, 1994). Activating the KAC 
channels with aspirin also hyperpolarised the RASM. Furthermore, we report that pinacidil 
also activated the KAC channels. Pinacidil has been previously thought to only activate 
classical KATP channels. 

There are some reports of large conductance Ca2+-activated K+ (“maxi-K”) channels as being 
a target for the fenamate class of NSAIDs. Ottilia & Toro (1994) reported that niflumic acid, 
flufenamic acid and mefenamic acid rapidly and reversibly activated a large conductance 
Ca2+-activated K+ channels. Greenwood & Large (1995) confirmed that those fenamates 
activated a large conductance Ca2+-activated K+ channel in rabbit portal vein, and those 
authors reported that the Ca2+-activated K+ current was inhibited by TEA but not by 
glibenclamide. Also, the cardiac delayed rectifier K+ channel HERG is activated by the 
fenamates flufenamic and niflumic acids (Malykhina et al., 2002) and flufenamic acid 
activated the maxi-K channel in the trabecular meshwork of both human and bovine origin 
(Stumpff et al., 2001). We found that neither niflumic acid, mefenamic acid nor flufenamic 
acid (but only in very high concentration) could activate the KAC channel. The KAC channels 
differ from the maxi-K class of channels in at least the lack of a fenamate binding site.  

Further insights into the nature of the NSAID binding site on the KAC channels can be 

obtained from the range of drugs used to activate these channels. KAC was activated by 

representative NSAIDs from the salicylate (aspirin), propionic acid (flurbiprofen) and indole 

(indomethacin) families of NSAIDs. The potency of the drugs in activating the KAC channels 

was aspirin > R-flurbiprofen = S-flurbiprofen > indomethacin > pinacidil > flufenamic acid 

(very weak effect) > niflumic acid = mefenamic acid (both no effect). The drugs with the 

most potent activating effect on KAC were generally the more acidic. This implies a different 

extracellular conformation of the KAC channels compared to the maxi-K channels, such that 

the nature of the residues available at the NSAID binding site may be different for these two 

types of large-conductance K+ channels.  

In our organ bath experiments R-flurbiprofen, an NSAID that activates the KAC channels but 
does not inhibit prostaglandin synthesis, antagonised PE-induced contraction of rings of 
aorta. In an earlier report, Pallapies et al (1994) found that both R- and S-flurbiprofen 
relaxed rat aorta that had been pre-contracted with PE. Furthermore, McGrath et al (1990) 
indicated that flurbiprofen inhibited acetylcholine-induced contractions of rabbit 
saphenous vein in which the endothelium was intact. In direct measurements of pressure 
in the perfused vascular bed of isolated rabbit lungs, aspirin was found to inhibit the PE-
induced increase in arterial pressure (Delaunois et al., 1994). Our results demonstrate the 
effect of flurbiprofen was not influenced by the presence of the endothelium, which 
suggested that flurbiprofen was acting directly on the smooth muscle cells of the aorta 
rings. The similarity in responses from R- and S-flurbiprofen suggested that the relaxation 
was due to activation of the KAC channel, rather than through effects on cyclo-oxygenase 
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pathways. Our results provide evidence that KAC channels provide a mechanism 
underlying the vasodilatory effect of NSAIDs. 

The primary cellular action of non-steroidal anti-inflammatory drugs (NSAIDs) is thought 
to be inhibition of cyclo-oxygenase pathways, the enzyme that catalyses the conversion of 
arachidonic acid to prostaglandin endoperoxides (Vane, 1971) which are the precursors of 
both prostacyclin and thromboxane A2 (Moncada et al., 1976). Such an action may be 
expected to be vasoconstrictive and lead to increased blood pressure, a possibility that has 
been suggested by meta-analyses of clinical studies (Johnson et al., 1994). However, early 
reports indicated that chronic administration of indomethacin or other NSAIDs had varying 
effects on blood pressure (Lopez-Ovejero et al., 1978; Ylitalo et al., 1978). On the contrary, 
whilst indomethacin and naproxen are associated with increases in blood pressure, NSAIDs 
such as sulindac, aspirin, piroxicam or ibuprofen have negligible effects (Pope et al., 1993). 
Moreover, in a direct study of the effects of NSAIDs in patients with mild essential 
hypertension, it was found that ibuprofen increased systolic blood pressure but neither 
aspirin nor sulindac had any significant effect on systolic or diastolic blood pressure (Minuz 
et al., 1990). Those clinical effects of different NSAIDs on blood pressure correlate well with 
our results on the potency of NSAIDs to activate KAC, which induces hyperpolarisation of 
the smooth muscle cells. Those clinical reports support our hypothesis that the variable 
effect on blood pressure was due to some NSAIDs, especially non-fenamates, inducing 
vasodilatation through the mechanism of activating KAC. 

The activating effect of NSAIDs on ion channels may be an important therapeutic effect in 
other parts of the body. Liu et al (2005) reported that diclofenac was able to activate 
transient outward potassium, I(A), channels in neurons. More recently, it has been reported 
that diclofenac (1 mg/mL) may exert a “local anaesthetic-like” action by reducing the 
excitability of muscle nociceptors without involving the opening of KATP channels (Cairns et 
al., 2008). The mechanism for such an effect could be hyperpolarisation of the muscle 
nociceptors by diclofenac activating channels such as those we describe. However, in very 
high concentrations salicylate (1 mM) applied to rat pyramidal neurons in the auditory 
cortex was reported to increase the firing rate of neurons and enhance neuronal excitability, 
with the mechanism apparently to inhibit ion currents including the voltage-gated sodium 
current, the delayed rectifier potassium current and the L-type voltage-gated calcium 
current (Liu et al., 2007). 

In summary, we describe a large-conductance K+ channel in smooth muscle cells that is 
activated by intracellular ATP and Ca2+, and which is activated by some NSAIDs and 
pinacidil. We have designated this channel KAC, as it does not have the characteristics of the 
classical ATP-sensitive K+ channel, and the KAC channels have additional features compared 
to the previously reported maxi-K channels (Kuriyama et al., 1998). The smooth muscle cells 
were hyperpolarised by aspirin, an NSAID that potently activated the KAC channel. Both R- 
and S-flurbiprofen antagonised constrictor responses of the rabbit aorta to PE, suggesting 
that relaxation occurred via a mechanism other than inhibition of cyclo-oxygenase 
pathways. We conclude that NSAIDs are potent openers of a Ca2+-activated 
phosphorylation-dependent potassium channel in vascular smooth muscle cells leading to 
cell hyperpolarisation and vessel dilatation. The activation of potassium channels is thought 
to be significant in controlling excitability of vascular smooth muscle cells and regulation of 
myogenic tone (Brayden & Helson, 1993), an idea that has been corroborated in coronary 
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arteries (Scornik et al., 1993) and in rabbit aorta (Gelband & McCullough, 1993). The KAC 
channel that we describe in this paper thus provides a novel target to control excitability of 
vascular smooth muscle cells and regulate myogenic tone. 
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