29 research outputs found

    ABT-869, a multitargeted receptor tyrosine kinase inhibitor: inhibition of FLT3 phosphorylation and signaling in acute myeloid leukemia

    Get PDF
    In 15% to 30% of patients with acute myeloid leukemia (AML), aberrant proliferation is a consequence of a juxtamembrane mutation in the FLT3 gene (FMS-like tyrosine kinase 3–internal tandem duplication [FLT3-ITD]), causing constitutive kinase activity. ABT-869 (a multitargeted receptor tyrosine kinase inhibitor) inhibited the phosphorylation of FLT3, STAT5, and ERK, as well as Pim-1 expression in MV-4-11 and MOLM-13 cells (IC_(50) approximately 1-10 nM) harboring the FLT3-ITD. ABT-869 inhibited the proliferation of these cells (IC_(50) = 4 and 6 nM, respectively) through the induction of apoptosis (increased sub-G_(0)/G_1 phase, caspase activation, and PARP cleavage), whereas cells harboring wild-type (wt)–FLT3 were less sensitive. In normal human blood spiked with AML cells, ABT-869 inhibited phosphorylation of FLT3 (IC_(50) approximately 100 nM), STAT5, and ERK, and decreased Pim-1 expression. In methylcellulose-based colony-forming assays, ABT-869 had no significant effect up to 1000 nM on normal hematopoietic progenitor cells, whereas in AML patient samples harboring both FLT3-ITD and wt-FLT3, ABT-869 inhibited colony formation (IC_(50) = 100 and 1000 nM, respectively). ABT-869 dose-dependently inhibited MV-4-11 and MOLM-13 flank tumor growth, prevented tumor formation, regressed established MV-4-11 xenografts, and increased survival by 20 weeks in an MV-4-11 engraftment model. In tumors, ABT-869 inhibited FLT3 phosphorylation, induced apoptosis (transferase-mediated dUTP nick-end labeling [TUNEL]) and decreased proliferation (Ki67). ABT-869 is under clinical development for AML

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be ∌24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with ÎŽ<+34.5∘\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r∌27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    THE HEAT OF FORMATION OF DIFLUOROSILYLENE

    No full text

    Tillage Options After CRP

    No full text
    In making tillage decisions for CRP land, consider conservation concerns, farming objectives, and plant and soil conditions. This publication provides research results to help you.https://lib.dr.iastate.edu/extension_pubs/1054/thumbnail.jp

    The ARTEMIS under-ice AUV docking system

    No full text
    © 2017 Wiley Periodicals, Inc. The ARTEMIS docking system demonstrates autonomous docking capability applicable to robotic exploration of sub-ice oceans and sub-glacial lakes on planetary bodies, as well as here on Earth. In these applications, melted or drilled vertical access shafts restrict vehicle geometry as well as the in-water infrastructure that may be deployed. The ability of the vehicle to return reliably and precisely to the access point is critical for data return, battery charging, and/or vehicle recovery. This paper presents the mechanical, sensor, and software components that make up the ARTEMIS docking system, as well as results from field deployment of the system to McMurdo Sound, Antarctica in the austral spring of 2015. The mechanical design of the system allows the vehicle to approach the dock from any direction and to pitch up after docking for recovery through a vertical access shaft. It uses only a small volume of in-water equipment and may be deployed through a narrow vertical access shaft. The software of the system reduces position estimation error with a hierarchical combination of dead reckoning, acoustic aiding, and machine vision. The system provides critical operational robustness, enabling the vehicle to return autonomously and precisely to the access shaft and latch to the dock with no operator input
    corecore