127 research outputs found
Long-term effects of chronic light pollution on seasonal functions of European blackbirds (turdus merula)
Light pollution is known to affect important biological functions of wild animals, including daily and annual cycles. However, knowledge about long-term effects of chronic exposure to artificial light at night is still very limited. Here we present data on reproductive physiology, molt and locomotor activity during two-year cycles of European blackbirds (Turdus merula) exposed to either dark nights or 0.3 lux at night. As expected, control birds kept under dark nights exhibited two regular testicular and testosterone cycles during the two-year experiment. Control urban birds developed testes faster than their control rural conspecifics. Conversely, while in the first year blackbirds exposed to light at night showed a normal but earlier gonadal cycle compared to control birds, during the second year the reproductive system did not develop at all: both testicular size and testosterone concentration were at baseline levels in all birds. In addition, molt sequence in light-treated birds was more irregular than in control birds in both years. Analysis of locomotor activity showed that birds were still synchronized to the underlying light-dark cycle. We suggest that the lack of reproductive activity and irregular molt progression were possibly the results of i) birds being stuck in a photorefractory state and/or ii) chronic stress. Our data show that chronic low intensities of light at night can dramatically affect the reproductive system. Future studies are needed in order to investigate if and how urban animals avoid such negative impact and to elucidate the physiological mechanisms behind these profound long-term effects of artificial light at night. Finally we call for collaboration between scientists and policy makers to limit the impact of light pollution on animals and ecosystems
Inflammatory and Immune Responses during SARS-CoV-2 Infection in Vaccinated and Non-Vaccinated Pregnant Women and Their Newborns
Background. Pregnant women are more susceptible to severe disease associated with SARS-CoV-2 infection. We performed a prospective study to analyze the inflammatory and immune profile after SARS-CoV-2 infection occurring in vaccinated or non-vaccinated pregnant women and their newborns. Methods. Twenty-five pregnant women with SARS-CoV-2 infection were enrolled, and sixteen cord blood samples were obtained at delivery. Results. We observed that IL-1β, TNF-α, Eotaxin, MIB-1β, VEGF, IL-15, IL-2, IL-5, IL-9, IL-10 and IL-1ra levels were significantly higher in vaccinated than non-vaccinated mothers. Furthermore, the newborns of the vaccinated mothers produced higher levels of IL-7, IL-5 and IL-12 compared to the newborns of non-vaccinated mothers. Anti-Spike (S) IgG levels were significantly higher in all vaccinated mothers and their newborns compared to the non-vaccinated group. We found that 87.5% of vaccinated women and 66.6% of non-vaccinated women mounted an S-specific T-cell response quantified by ELISpot assay. Moreover, 75.0% of vaccinated mothers and 38.4% of non-vaccinated mothers showed S-specific CD4+ T-cell proliferative response. The T-helper subset response was restricted to CD4+ Th1 in both vaccinated and non-vaccinated women. Conclusion. A higher level of cytokines, IgG antibodies and memory T cells was noted in the vaccinated women. Furthermore, the maternal IgG antibody trans-placental transfer occurred more frequently in vaccinated mothers and may protect the newborn
Global Climate Change and Invariable Photoperiods: A Mismatch That Jeopardizes Animal fitness
The Earth\u27s surface temperature is rising, and precipitation patterns throughout the Earth are changing; the source of these shifts is likely anthropogenic in nature. Alterations in temperature and precipitation have obvious direct and indirect ef‐ fects on both plants and animals. Notably, changes in temperature and precipita‐ tion alone can have both advantageous and detrimental consequences depending on the species. Typically, production of offspring is timed to coincide with optimal food availability; thus, individuals of many species display annual rhythms of reproductive function. Because it requires substantial time to establish or re‐establish reproduc‐ tive function, individuals cannot depend on the arrival of seasonal food availability to begin breeding; thus, mechanisms have evolved in many plants and animals to monitor and respond to day length in order to anticipate seasonal changes in the environment. Over evolutionary time, there has been precise fine‐tuning of critical photoperiod and onset/offset of seasonal adaptations. Climate change has provoked changes in the availability of insects and plants which shifts the timing of optimal reproduction. However, adaptations to the stable photoperiod may be insufficiently plastic to allow a shift in the seasonal timing of bird and mammal breeding. Coupled with the effects of light pollution which prevents these species from determining day length, climate change presents extreme evolutionary pressure that can result in se‐ vere deleterious consequences for individual species reproduction and survival. This review describes the effects of climate change on plants and animals, defines photo‐ period and the physiological events it regulates, and addresses the consequences of global climate change and a stable photoperiod
Annual rhythms of temporal niche partitioning in the Sparidae family are correlated to different environmental variables
none11siopenSbragaglia, Valerio; Nuñez, Jesús D.; Dominoni, Davide; Coco, Salvatore; Fanelli, Emanuela; Azzurro, Ernesto; Marini, Simone; Nogueras, Marc; Ponti, Massimo; del Rio Fernandez, Joaquin; Aguzzi, JacopoSbragaglia, Valerio; Nuñez, Jesús D.; Dominoni, Davide; Coco, Salvatore; Fanelli, Emanuela; Azzurro, Ernesto; Marini, Simone; Nogueras, Marc; Ponti, Massimo; del Rio Fernandez, Joaquin; Aguzzi, Jacop
Baseline and Stress-Induced Corticosterone Levels Across Birds and Reptiles Do Not Reflect Urbanication Levels
Rates of human-induced environmental change continue increasing with human population size, potentially altering animal physiology and negatively affecting wildlife. Researchers often use glucocorticoid concentrations (hormones that can be associated with stressors) to gauge the impact of anthropogenic factors (e.g. urbanization, noise and light pollution). Yet, no general relationships between human-induced environmental change and glucocorticoids have emerged. Given the number of recent studies reporting baseline and stress-induced corticosterone (the primary glucocorticoid in birds and reptiles) concentrations worldwide, it is now possible to conduct large-scale comparative analyses to test for general associations between disturbance and baseline and stress-induced corticosterone across species. Additionally, we can control for factors that may influence context, such as life history stage, environmental conditions and urban adaptability of a species. Here, we take a phylogenetically informed approach and use data from HormoneBase to test if baseline and stress-induced corticosterone are valid indicators of exposure to human footprint index, human population density, anthropogenic noise and artificial light at night in birds and reptiles. Our results show a negative relationship between anthropogenic noise and baseline corticosterone for birds characterized as urban avoiders. While our results potentially indicate that urban avoiders are more sensitive to noise than other species, overall our study suggests that the relationship between human-induced environmental change and corticosterone varies across species and contexts; we found no general relationship between human impacts and baseline and stress-induced corticosterone in birds, nor baseline corticosterone in reptiles. Therefore, it should not be assumed that high or low levels of exposure to human-induced environmental change are associated with high or low corticosterone levels, respectively, or that closely related species, or even individuals, will respond similarly. Moving forward, measuring alternative physiological traits alongside reproductive success, health and survival may provide context to better understand the potential negative effects of human-induced environmental change
Environmental constraints can explain clutch size differences between urban and forest blue tits: insights from an egg removal experiment
Urban environments present novel ecological challenges to wild species. In birds, urban populations generally exhibit reduced clutch sizes compared to forest populations. However, whether smaller urban clutches are adaptive or a result of environmental constraints is unclear.
To investigate these two hypotheses, we quantified the ability of urban and non-urban blue tits (Cyanistes caeruleus) to lay new eggs after an experimental manipulation aimed to increase egg production. We removed the first four eggs laid by urban and forest birds to test their ability to produce new eggs. If the urban environment imposes constraints on egg production, we predicted that urban birds would not lay new eggs. If the small clutches of urban birds are an adaptive response, we predicted they would lay new eggs to reach the optimal clutch size for the environment.
Consistent with the environmental constraint hypothesis, our results suggest that urban females do not lay new eggs to the same extent as forest birds following egg removal. Forest birds laid approximately two new eggs after our experimental manipulation, while urban birds laid approximately 0.36 new eggs following egg removal.
Our manipulation resulted in a brood reduction in the urban experimental nests, yet there was no difference in the number of fledged offspring between urban control and experimental nests. This suggests that females might be misjudging urban habitat quality and produce a clutch with more eggs than nestlings they can rear.
Overall, our results suggest that environmental constraints could limit the number of eggs that urban females lay, generating urban versus non-urban differences in this trait
Conservation front lines need experienced troops: the role of a scientific trust in a changing world
The active participation of scientific trusts, including CISO (Centro Italiano Studi Ornitologici), in applied conservation actions plays a crucial role in addressing the challenges faced by natural and semi-natural landscapes, which are increasingly impacted by improper land-use and land-cover. This is particularly true for those landscapes where Large Infrastructures and Big Events (LIBEs) are planned. In these circumstances, researchers, professionals, and environmentalists typically express their concerns on the impacts of LIBEs through mediatic campaigns, often highlighting the ecological importance of vulnerable areas. These actions form the first, useful level of engagement in conservation. However, we advocate for a more proactive role of scientific trusts, which should entail forming task forces of conservation experts and providing scientific support in management decisions when LIBEs are being considered. In our opinion, scientists should locally produce original field studies by using effective sampling designs such as Before-After-Control-Impact surveys. We highlight that such a targeted level of action may support the public agencies when authorizing (or not) LIBEs, by providing evidence-based information about the ecological value of the target area and the potential impacts of LIBEs on ecosystem functions and local biodiversity. The aim is to avoid emotion-based social media loops, conflicts, and polarizations in the discussions about the ecological impacts of LIBEs
RANK expression in EBV positive nasopharyngeal carcinoma metastasis: A ready-to-treat target?
Epstein Barr Virus (EBV) related Nasopharyngeal Carcinoma (NPC), is an highly chemo- and radiosensitive endemic malignancy in southeast Asia. More than one third of locally advanced cases relapse after curative treatment, especially because of bone, liver and lung metastases. Lymphocyte sub-populations favour EBV-associated carcinogenesis and tumour progression and several strategies aim to reverse this phenomenon. Receptor activator of NF-kB (RANK) and its Ligand (RANKL), key regulator of bone metabolisms, are expressed in several malignancies and tumorinfiltrating Tregs. We collected 17 paired FFPE specimen of primary and metachronous metastatic or regionally relapsed EBV related NPC and evaluated RANK expression by immunohistochemistry. All primary tumour specimens resulted not evaluable whereas all metastatic specimens, regardless of sites, showed high RANK IHC expression in the tumor with no staining in normal surrounding tissues. This observation deserves further clarifications and could open the way to trials testing the hypotesis that targeting the RANK/RANKL pathway with denosumab, an already available, clinically approved monoclonal antibody for metastatic bone lesions, might restore proper antitumor immune response in NPC metastatic patients
- …
