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1  | INTRODUC TION

Although not the first to describe humans' impact on the Earth's cli‐
mate, Wallace Broecker is generally credited with coining the term 
“global warming” to describe the Earth's rising surface temperatures 

due to anthropogenic effects (Broecker, 1975). Prior to 1975, scien‐
tists favored the terms “climate change” or “climate modification” as 
it was unclear what effect human activities might have on the Earth's 
climate. Today, it is apparent that the Earth's mean surface tempera‐
tures are on the rise. Indeed, the Intergovernmental Panel on Climate 
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Abstract
The Earth's surface temperature is rising, and precipitation patterns throughout 
the Earth are changing; the source of these shifts is likely anthropogenic in nature. 
Alterations in temperature and precipitation have obvious direct and indirect ef‐
fects on both plants and animals. Notably, changes in temperature and precipita‐
tion alone can have both advantageous and detrimental consequences depending on 
the species. Typically, production of offspring is timed to coincide with optimal food 
availability; thus, individuals of many species display annual rhythms of reproductive 
function. Because it requires substantial time to establish or re‐establish reproduc‐
tive function, individuals cannot depend on the arrival of seasonal food availability 
to begin breeding; thus, mechanisms have evolved in many plants and animals to 
monitor and respond to day length in order to anticipate seasonal changes in the 
environment. Over evolutionary time, there has been precise fine‐tuning of critical 
photoperiod and onset/offset of seasonal adaptations. Climate change has provoked 
changes in the availability of insects and plants which shifts the timing of optimal 
reproduction. However, adaptations to the stable photoperiod may be insufficiently 
plastic to allow a shift in the seasonal timing of bird and mammal breeding. Coupled 
with the effects of light pollution which prevents these species from determining day 
length, climate change presents extreme evolutionary pressure that can result in se‐
vere deleterious consequences for individual species reproduction and survival. This 
review describes the effects of climate change on plants and animals, defines photo‐
period and the physiological events it regulates, and addresses the consequences of 
global climate change and a stable photoperiod.
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Change (IPCC) reported a linear trend demonstrating a warming of 
0.85°C in land and ocean surface temperatures from 1880 to 2012. 
This trend shows no signs of slowing as global surface temperatures 
at the end of the 21st century are predicted to rise as high as 4.8°C 
relative to 1850–1900 surface temperatures (IPCC, 2014).

The root of global climate change is likely anthropogenic in 
nature. Rise in global temperatures coincides with the Industrial 
Revolution and the emission of greenhouse gases, the most prom‐
inent of which is carbon dioxide (Maxwell, 1992). Undoubtedly, car‐
bon dioxide emissions are increasing (Malik, Lan, & Lenzen, 2016); 
half of all the anthropogenic carbon dioxide emissions from 1750 
to 2011 have occurred during the past 40 years, with the largest 
increases in greenhouse gas emissions from 2000 to 2010 (IPCC, 
2014). Today, the US Environmental Protection Agency (EPA) esti‐
mates that carbon dioxide emissions from all human activities ac‐
count for approximately 80% of the total annual greenhouse gas 
emissions within the United States. This accumulation of carbon 
dioxide in the Earth's atmosphere intensifies the greenhouse effect; 
thus, increased absorption and reflection of Earth's infrared energy 
emissions by a collection of greenhouse gases has led to increased 
surface temperatures (Anderson, Hawkins, & Jones, 2016).

Notably, the effects of global climate change are not uniformly dis‐
tributed among latitudes, as higher latitudes are expected to warm at 
an increased rate relative to the global mean (IPCC, 2014). This is evi‐
denced by the reductions in global glacier mass and the decline in size of 
Greenland and Antarctic ice sheets (Alley, Clark, Huybrechts, & Joughin, 
2005; Oerlemans, 2005). Additionally, global climate change differen‐
tially affects seasons with a greater absolute increase in temperatures 
during the winter relative to the summer (Hughes, 2000). Indeed, the 
US National Oceanic and Atmospheric Administration (NOAA) records 
from 1970 to 2014 demonstrate a seasonal trend of winter tempera‐
tures warming twice the rate of the summer. Crucially, global climate 
change is not limited to increases in surface temperatures, as global 
climate change also encompasses alterations to the global hydrological 
cycle, and, consequently, global precipitation. Since 1950, precipitation 
has increased substantially in mid‐latitude land areas in the Northern 
Hemisphere. Analysis of satellite observations demonstrates a steady 
increase in overall precipitation and total atmospheric water, as a result 
of increased temperatures and the saturation of water vapor pressure 
(Liepert & Previdi, 2009; Wentz, Ricciardulli, Hilburn, & Mears, 2007). 
Furthermore, climate models predict a contrasting change in global 
precipitation; high latitudes, mid‐latitude wet regions, and the equato‐
rial Pacific are expected to experience increased precipitation, whereas 
mid‐latitude and subtropical dry regions are expected to experience de‐
creased precipitation (IPCC, 2014).

2  | POTENTIALLY POSITIVE EFFEC TS 
OF CLIMATE CHANGE ON PL ANTS AND 
ANIMAL S

On the surface, it may seem that global climate change has favora‐
ble effects on plants and animals. For plants, global climate change 

appears beneficial as it allows for the earlier onset of spring, pro‐
longed growing season, as well as increased concentrations of 
atmospheric carbon dioxide, which is necessary for plant photo‐
synthesis (Myneni, Keeling, Tucker, Asrar, & Nemani, 1997). Indeed, 
satellite data from a series of NOAA meteorological satellites have 
demonstrated, in Northern latitudes, increased plant growth dur‐
ing the summer and elevated plant respiration during the winter, 
which corresponded to rising temperatures and the lengthen‐
ing of the active growing season (Myneni et al., 1997). Tree ring 
analyses in the Northern hemisphere have demonstrated increased 
tree growth during the past century (Briffa et al., 1998; Jacoby, 
D'Arrigo, & Davaajamts, 1996). Additionally, rising temperatures 
have allowed for the increased distribution and survival of some 
plant species; numerous studies have demonstrated an upward 
tree line migration and increased population growth at higher el‐
evations and latitudes (Kullman, 2001; Lloyd, 2005; Mazepa, 2005; 
Meshinev, Apostolova, & Koleva, 2000; Smith, 1994; Sturm, Racine, 
& Tape, 2001; Walther et al., 2002). For example, Smith (1994) de‐
tailed the expansion of vascular plants, Colobanthus quitensis and 
Deschampsia antarctica, within Antarctica from 1960 until 1990. 
In Galindez Island, numbers of D. antarctica increased from 500 
plants in 1964 to over 12,000 plants in 1990; similar effects were 
observed for C. quitensis. This expansion held true across multiple 
locations within Antarctica.

The favorable effects on plant growth due to global climate 
change can culminate in beneficial effects on animals. This is ob‐
served in tussocks cottongrass (Eriophorum vaginatum) and reindeer 
(Rangifer tarandus) inhabiting Seward Peninsula in Alaska (Cebrian, 
Kielland, & Finstad, 2008). Here, early snowmelt advanced the time 
of flowering of E. vaginatum, which serves as food for R. tarandus, 
and altered its nitrogen concentrations throughout inflorescence, 
effectively modifying its chemistry as evidenced by enhanced di‐
gestibility of the plant. Modeling suggests that an increase in digest‐
ibility of the plant will result in a twofold rise in dry matter intake, 
which will translate into an increase in reindeer weight, during the 
critical period of late winter to early spring, during which reindeer 
prepare for reproduction and breed (Cebrian et al., 2008). This in‐
creased body weight would support the recovery of fat and protein 
loss during the winter. Moreover, the replenishing of these nutrients 
would allow for a rise in milk production in females (Chan‐McLeod, 
White, & Holleman, 1994), resulting in positive cascading effects 
by increasing healthy calf growth, survival, and reproduction of the 
species.

Additional favorable effects have been observed on insects via 
earlier onset of insect flight periods, acceleration of development 
rates, enhanced winter survival, and expansion of range (Robinet 
& Roques, 2010). For example, more than 70% of butterfly species 
examined in the United Kingdom, Spain, and California have demon‐
strated an advancement in onset of flight (Forister & Shapiro, 2003; 
Roy & Sparks, 2000; Stefanescu, Peñuelas, & Filella, 2003). Similar 
advancements in first flight have been observed across other insect 
species including bees (Apis mellifera), fruit flies (Bactrocera oleae), 
and beetles (Leptinotarsa decemlineata; Gordo & Sanz, 2005).
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Acceleration in development rates is expected, particularly 
among polyvoltine species (Robinet & Roques, 2010). For instance, 
from 1971 to 1996 the time required for the North American spruce 
beetle (Dendroctonus rufipennis) to reproduce has halved due to in‐
creased temperatures (Berg, Henry, Fastie, Volder, & Matsuoka, 
2006). Additionally, enhanced winter survival has been reported 
in beetles (D. rufipennis and Ips typographus), moths (Thaumetopoea 
pityocampa), aphids (Myzus persicae), and mosquitos (Aedes albopic‐
tus; Bale et al., 2002; Berg et al., 2006; Karuppaiah & Sujayanad, 
2012; Robinet & Roques, 2010; Rochlin, Ninivaggi, Hutchinson, & 
Farajollahi, 2013). Remarkably, these changes coincide with the 
range expansion reported in dragonflies, grasshoppers, lacewings, 
butterflies, mosquitos, and moths (Hickling, Roy, Hill, Fox, & Thomas, 
2006; Jepsen, Hagen, Ims, & Yoccoz, 2008; Menéndez, 2007; Rochlin 
et al., 2013).

3  | DETRIMENTAL EFFEC TS OF CLIMATE 
CHANGE ON PL ANTS AND ANIMAL S

Just as some of the effects of climate change might seemingly ben‐
efit some species, not all organisms and phenophases are able to 
respond to temperature and precipitation changes and adapt accord‐
ingly. For instance, despite climate change increasing the number of 
days above freezing and lengthening the growing season for plants, 
there are studies that suggest climate change may have detrimental 
effects on plant growth. Mora et al. (2015) used climate projection 
models to assess how rising temperatures in combination with water 
availability and solar radiation might affect suitable growing days 
for plants by the year 2100. The authors demonstrate that despite 
increasing the number of days above freezing by up to 7%, the num‐
ber of suitable growing days would drop by up to 11%. Further, this 
reduction in suitable growing days was more profound in tropical 
areas, as the number of suitable growing days was projected to be 
reduced by up to 200 plant growing days per year, as warming will 
likely exceed the upper threshold for plant growth.

Additionally, rising temperatures are predicted to increase plant 
extinction, as plants can no longer track regions of suitable climate 
(Corlett & Westcott, 2013). Indeed, Corlett and Westcott (2013) pro‐
pose that plant species will need to move greater than one kilometer 
per year to keep up with climate change; this pace can only be met 
in extremely rare instances where plants possess the combination of 
characteristics including long dispersal distances and short time to 
maturation. The harmful effects of global climate change on plants 
can also occur via indirect mechanisms. Harvell et al. (2002) suggest 
that rising temperatures and milder winters will have detrimental 
effects on plant species by increasing the winter survival of plant 
pathogens, accelerating their development, and expanding patho‐
gen range. Indeed, studies examining the effects of climate change 
on plant diseases have concluded that rising temperatures likely 
increase plant disease severity. This is evidenced by Phytophthora 
cinnamomic causing more severe root rot at higher temperatures and 
a 14‐year field study in England demonstrating greater defoliation 

in warmer years by the Dutch elm disease fungus (Ophiostoma no‐
voulmi; Brasier, 1996; Sutherland, Pearson, & Brasier, 1997).

Further indirect detrimental effects on plants include the expan‐
sion of invasive alien plant species (Dukes & Mooney, 1999; Hobbs 
& Mooney, 2005). Dukes and Mooney (1999) propose these invasive 
species possess particular traits which allow them to better capi‐
talize on components of global climate change such as increases in 
CO2 concentrations and nitrogen deposition. Indeed, Smith et al. 
(2000) established that the presence of elevated carbon dioxide in‐
creased above‐ground production and seed rain in invasive annual 
grass compared to several species of native annuals. Furthermore, 
Nagel, Huxman, Griffin, and Smith (2004) demonstrate a stimulation 
of invasive grass species in the presence of carbon dioxide, with no 
response in cohabitating native species.

The adverse effects of global climate change are not limited to 
plants. One of the most worrisome consequences of climate change 
is the extinction of animal species. Although currently there is no 
meaningful evidence that climate change has led to species extinc‐
tion, there is an abundance of evidence that demonstrates that 
climate change has led to population declines. This is particularly 
true for populations of animal species which are limited in range 
due to geographic constraints (i.e., high‐altitude mountainous spe‐
cies and Arctic/Antarctic species; Derocher, Lunn, & Stirling, 2004; 
Parmesan, 2006; Regehr, Lunn, Amstrup, & Stirling, 2007; Stirling, 
Lunn, & Iacozza, 1999; Trivelpiece et al., 2011; Wiig, Aars, & Born, 
2008). For instance, Stirling et al. (1999) examined how the popula‐
tion ecology of polar bears (Ursus maritimus) in the Western Hudson 
Bay relates to climate change. The authors concluded that the phys‐
ical condition and natality of polar bears had significantly declined 
from 1981 to 1998. This decline was associated with earlier sea ice 
breakup as a result of warming air temperatures.

Studies also have observed similar declines in populations of 
Antarctic Adélie, chinstrap, and emperor penguins (Pygoscelis adeliae, 
Pygoscelis antarcticus, and Aptenodytes forsteri, respectively; Barbosa, 
Benzal, León, & Moreno, 2012; Barbraud & Weimerskirch, 2001; 
Trivelpiece et al., 2011). Moreover, population declines have been 
reported in caribou (Rangifer tarandus), reindeer (Rangifer tarandus), 
Brünnich's guillemots (Uria lomvia), common eiders (Somateria mol‐
lissima), and arctic foxes (Vulpes lagopus) among others (Descamps, 
Strøm, & Steen, 2013; Killengreen et al., 2007; Merkel, 2004; Vors 
& Boyce, 2009). Additionally, climate change has been associated 
with declines in mountainous animal species such as pikas (Ochotona 
princeps) in the Western United States, Apollo butterflies (Parnassius 
apollo) in France, and harlequin toads (Atelopus sp.) and golden toads 
(Bufo periglenes) in the mountains of Costa Rica (Beever, Brussard, & 
Berger, 2003; Descimon, Bachelard, Boitier, & Pierrat, 2005; Pounds 
et al., 2006). These reductions in population size are likely due to 
a myriad of climate related factors including reductions in suitable 
habitat, changes in food sources and availability, alterations in preda‐
tor–prey interactions, range expansion of competing species, and in‐
crease in pathogen survival and development (Davidson et al., 2011; 
Derocher et al., 2004; Dirnböck, Essl, & Rabitsch, 2011; Gilg, Sittler, 
& Hanski, 2009; Killengreen et al., 2007; Mallory & Boyce, 2017; 
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Pounds et al., 2006; Stirling et al., 1999; Thomas et al., 2004; Tulp 
& Schekkerman, 2008; Wilson et al., 2005). For instance, a common 
hypothesis to explain the reductions in populations of Arctic foxes is 
the expansion of the range of the red fox (V. vulpes) to Arctic regions 
due to climate change. This range expansion of the larger sized red 
fox has had detrimental consequences on Arctic fox populations as 
they compete for similar food sources and den sites (Hersteinsson & 
Macdonald, 1992; Killengreen et al., 2007). Additionally, Pounds et 
al. (2006) concluded with very high confidence that in the mountain‐
ous regions of Costa Rica the expansion of the pathogenic fungus 
(Batrachochytrium dendrobatidis), due to climate change, was respon‐
sible for the population decline and extinction of 67% of the 110 
species of the harlequin toad. Furthermore, reductions in suitable 
habitat due to climate change have been proposed as a driving factor 
in the decline of diverse species such as polar bears and butterflies 
(Derocher et al., 2004; Parmesan, 2006; Wilson et al., 2005).

4  | CLIMATE CHANGE AND 
PHOTOPERIOD

To our knowledge, prevailing models for predicting the impacts of 
climate change on organisms have yet to thoroughly integrate the in‐
terplay of factors other than temperature and precipitation that con‐
tribute to how organisms respond to the “new,” shorter and warmer 
winters. It is abundantly evident that climate has a profound effect 
on organisms, as it serves as a cue for life history events. Climate 
change has resulted in global variations in the onset of seasons, de‐
laying winter and advancing spring, thereby, providing a wider range 
of favorable temperatures for some organisms, resulting in the ex‐
pansion of their growing seasons, but creating a misalignment be‐
tween species and their ecological interactors (Donnelly, Caffarra, 
& O'Neill, 2011). Although nutrition, water, and temperature are 
the ultimate drivers of seasonal rhythms, plants and animals have 
evolved remarkably similar mechanisms to use day length (photo‐
period) as a proximate cue for predicting the occurrence of these 
ultimate factors. Although a crucial cue influencing organisms’ phe‐
nophases and life histories, photoperiod has not been examined 
thoroughly in relation to climate change. This review will primarily 
focus on photoperiod‐induced annual events in birds and mammals.

Photoperiod refers to day length, which varies with latitude and 
seasons. It is governed by Earth's rotation around the Sun and its 
tilt. With this continual rotation, the hemispheres receive differing 
exposure to sunlight, hence creating the different seasons charac‐
terized by varying day length and temperature. Day length does not 
perceptibly vary across years. Hence, it is a reliable cue for animals 
and plants to drive their nutritional, metabolic, and reproductive 
behaviors, which ultimately results in regular seasonal rhythms. 
Although photoperiod has no direct effects on fitness, it allows pre‐
diction of environmental factors that do directly affect fitness. Over 
evolutionary time, there has been selection for exquisite precision in 
photoperiodic regulation of physiology and behavior tied to environ‐
mental conditions (Stevenson, Prendergast, & Nelson, 2017). These 

photoperiod‐mediated patterns occur over various months every 
year in direct correlation with day length (Bartness & Wade, 1984; 
Bronson, 2009; Chemineau et al., 2008). Organisms under photo‐
period‐driven rhythms depend on photic cues as driving factors for 
behavioral and physiological events. In mammals, light enters the 
eyes and stimulates the retinas, activating intrinsically photosensi‐
tive retinal ganglion cells (ipRGCs) that contain the photopigment, 
melanopsin, which responds especially to blue wavelength light. 
Despite their receptiveness to wavelengths of light, ipRGCs do not 
contribute to visual responses (Gooley, Lu, Chou, Scammell, & Saper, 
2001; Hattar, Liao, Takao, Berson, & Yau, 2002). This information is 
relayed to the master circadian clock in the hypothalamus, the su‐
prachiasmatic nucleus (SCN), via the monosynaptic retinohypotha‐
lamic tract (RHT; Moore & Lenn, 1972; Moore, Speh, & Card, 1995; 
Ralph, Foster, Davis, & Menaker, 1990; Sadun, Schaechter, & Smith, 
1984; Stephan & Zucker, 1972b, 1972a). Subsequently, the SCN 
communicates with secondary oscillators in the brain, such as the 
pineal gland, pituitary gland, and other brain regions, which in turn, 
relay the photoperiodic signal to the rest of the body modulating 
sleep, endocrine responses (Moore & Eichler, 1972; Moore & Lenn, 
1972), patterns of daily locomotor activity (Stephan & Zucker, 1972b, 
1972a), and core body temperature (Scheer, Pirovano, Someren, & 
Buijs, 2005) among others. Hence, it follows that circadian rhythms 
can be tempered by altering biological light conditions. Importantly, 
having entrained circadian rhythms is critical for endogenous assess‐
ment of day length.

The annual cycle of changing day length is commonly used as 
a signal of the approaching and waning seasons. In many verte‐
brates, photoperiodic information is encoded by the central cir‐
cadian clock located in the SCN (Hastings and Herzog, 2004). The 
SCN regulates the synthesis and release of melatonin from the 
pineal gland during the night; thus, day length differences are as‐
sessed by monitoring night length, which is encoded by the dura‐
tion of melatonin secretion into the blood and cerebrospinal fluid 
(Pevet and Challet, 2011; Reiter, Tan, Kim, & Cruz, 2014). Relatively 
long durations of secreted melatonin encode long nights (or short 
days), whereas relatively short elevations of secreted melatonin 
encode short nights (or long days). Melatonin targets several brain 
regions to affect the phase of peripheral circadian clocks, as well 
as the central clock in the SCN, by altering expression of circa‐
dian clock genes (Pevet and Challet, 2011). Among the target sites 
of melatonin, the pars tuberalis (PT) of the pituitary stalk plays a 
key role in the photoperiodic pathway governing seasonal repro‐
duction (Dardente, 2012). In mammals, a long‐day signal rapidly 
induces the strong peak of the transcription factor Eyes absent 3 
(Eya3) in the PT (Dardente et al., 2010; Masumoto et al., 2010). 
EYA3 contributes to thyroid stimulating hormone (TSH) synthesis 
in the PT by activating transcription of TSH b subunit (TSHb). TSH 
acts on TSH receptor (TSHR)‐expressing cells in the basal hypo‐
thalamus to increase thyroid hormone (T3) availability. T3 interacts 
with hypothalamic peptides which eventually control the release 
of gonadotropins from the adenohypophysis leading to seasonal 
changes in gonadal size and function, as well as adjustments in 
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body mass (Barrett et al., 2007). Although environmental factors 
such as temperature vary from year to year, annual changes in day 
length follow a predictable and consistent pattern. However, re‐
cent urbanization activity by humans has increased the prevalence 
of artificial light at night, rapidly changing the natural environment 
to which organisms must adjust (Hölker et al., 2010). Again, the 
role of day length in coordinating seasonal phenotypic changes 
has evolved with precision so that seasonal reproductive func‐
tion coincides with optimal conditions for offspring and parental 
survival (Nelson, 1987). Exposure to light at night alters the daily 
melatonin cycle and other aspects of the circadian system and af‐
fects many photoperiod‐regulated physiological and behavioral 
responses (Navara and Nelson, 2007). Both synchronization of cir‐
cadian clocks and photoperiodic time measurement depend on a 
distinct demarcation between light and dark. Modern illuminated 
skies prevent this demarcation (Dominoni, Borniger, & Nelson, 
2016; Dominoni & Nelson, 2018).

5  | E VENTS CUED BY PHOTOPERIOD

Studies on animals have revealed how photoperiod influences key 
events in their life history. For example, changes in day length af‐
fect metabolism causing fluctuations in body weight and related hor‐
mones. For nocturnal Syrian hamsters (Mesocricetus auratus), short 
days (10:14) promote body weight gain, as well as white and brown 
adipose tissue increase, independent of pinealectomy (Bartness & 
Wade, 1985). These findings suggest that melatonin is not required 
for this weight gain to occur. Djungarian hamsters (Phodopus sun‐
gorus) also experience photoperiod‐associated weight changes. 
They lose 30% of body weight with a 20% decrease in food intake 
over winter (Steinlechner, Heldmaier, & Becker, 1983); however, this 
decrease is not detrimental, but adaptive. Their size reduction allows 
the species to maximize its feeding efficiency by increasing the rela‐
tive food requirements without increasing its absolute food intake. 
These cases are examples of seemingly opposite adaptive mecha‐
nisms, mediated by photoperiodic signals, to prepare these rodents 
for the winter months when food is scarce, and they need to effec‐
tively preserve energy.

Day length also serves as a cue for successful reproduction. 
Optimal synchrony of tissue‐specific peripheral circadian clocks, 
which may be impacted by perturbed photoperiodic cycles, is also 
essential for successful reproduction, as food and nutrient availabil‐
ity is key to fitness and survival (Reiter, Tan, Korkmaz, & Rosales‐
Corral, 2013); hence, birth and rearing must be aligned to the time 
when these resources are accessible, while conserving energy when 
they are not. Under natural winter photoperiod and temperature 
conditions, male Syrian hamsters (Mesocricetus auratus) experience 
gonadal regression mediated by the pineal gland (Reiter, 1973), 
through its release of melatonin (Reiter, 1991) and its downstream 
cascade.

During the past 30 years, evidence has mounted that artifi‐
cial light during the night (ALAN) disrupts circadian rhythms and 

photoperiodic responses. Of note, ALAN does not alter the length 
of day, but does alter perceived day length. Abundant data demon‐
strate harmful effects caused by altering the natural photoperiod. 
For example, dim light at night (dLAN) alters short‐day regulation 
of reproduction in male Siberian hamsters (P. sungorus; Ikeno, Weil, 
& Nelson, 2014); specifically, dLAN blunted nocturnal activity and 
altered the expression of genes implicated in photoperiodic re‐
sponse including, Mel‐1a melatonin receptor, Eyes absent 3, thyroid 
stimulating hormone receptor, gonadotropin‐releasing hormone, and go‐
nadotropin‐inhibitory hormone. Additionally, these changes were as‐
sociated with shifts in circadian clock gene expression (Period1), and 
alterations in gonadal mass, sperm numbers, pelage color, and pel‐
age density (Ikeno et al., 2014). Similar changes in reproduction and 
mating have been demonstrated in Drosophila melanogaster (McLay, 
Nagarajan‐Radha, Green, & Jones, 2018), dLAN prolonged courting 
behavior, and altered oviposition patterns. LAN exposure of great 
tits (Parus major) and European blackbirds (Turdus merula) advanced 
the timing of vernal gonad growth (Dominoni et al., 2018; Dominoni, 
Quetting, & Partecke, 2013).

The effects of disrupted photoperiod due to LAN are not limited 
to reproduction. Numerous studies have demonstrated changes in 
behavior and immune function, which in the wild would likely lead 
to reduced fitness. For example, mice housed in dim light at night 
consume food at the “wrong” time of day (during the day), as well 
as reduce their avoidance of open field conditions, two behaviors 
which are maladaptive for small nocturnal prey species (Fonken et 
al., 2009, 2010; Nelson & Chbeir, 2018). Further, LAN exposure has 
detrimental effects on both the innate and adaptive immune sys‐
tems. Japanese quail (coturnix japonica) housed in constant light 
demonstrated suppressed cell‐mediated immune response and hu‐
moral immune response when challenged with an antigen (Moore & 
Siopes, 2000). Similar deficits in immune function have been demon‐
strated in cockerels maintained in constant light and rats exposed to 
LAN. Specifically, LAN exposure suppressed antibody production in 
cockerels and reduced cytotoxic activity of natural killer cells in rats 
(Kirby & Froman, 1991; Oishi et al., 2006). Notably, given the perva‐
sive nature of LAN in today's society, there will likely arise synergis‐
tic detrimental effects on individuals due to global climate change 
and exposure to light at night.

6  | EFFEC TS OF CLIMATE CHANGE WITH 
A STABLE PHOTOPERIOD

Despite the impact on temperature and precipitation, global climate 
change has no effect on day length, a key Zeitgeber (time giver) used 
by both plants and animals to time seasonal transitions and growing 
periods (Andrews & Belknap, 1993). Hence, the mismatch between 
temperature and day length cues creates an additional confounding 
dimension for organismal development, reproduction, and survival. 
This leads to potential detrimental effects on individuals as season‐
ality and annual events are modulated by both temperature and pho‐
toperiod; therefore, the growing disparity between temperature and 



     |  10049WALKER Et AL.

photoperiod misaligns this synchrony that defines seasons and cyclic 
events. Examples of these are as follows: reproduction not aligned 
with nutrient availability (Visser & Both, 2005; Visser, Noordwijk, 
Tinbergen, & Lessells, 1998), disrupted prey–predator and plant–pol‐
linator interactions, and other symbiotic relationships (Donnelly et 
al., 2011; Van Asch & Visser, 2006; Visser & Both, 2005).

Desynchronization of offspring birth and optimal nutrient avail‐
ability has been reported in great tits (Parus major) in the Netherlands 
(Visser et al., 1998). Despite consuming a variety of insects as part of 
their diet, great tits preferentially feed their young protein‐rich cater‐
pillars. Driven by photoperiod cues during the spring, the great tit lays 
its eggs at a time that provides an adequate interval before hatching; 
this aligns with the timeframe during which caterpillar biomass avail‐
ability is at its maximum. However, during the period of 1973–1995 an 
increase in temperature during the post‐egg‐laying period advanced 
the development and availability of caterpillars, without advancing 
hatch time of the great tits (Visser et al., 1998). Consequently, a mis‐
match between offspring nutritional requirements and their avail‐
ability ensued. It follows that great tits are now confronted with an 
evolutionary pressure to alter its reproductive phase to align with food 
availability. Clearly, to ensure the optimal survival of their offspring, 
the great tit is forced to advance its time of egg laying to match abiotic 
changes that cause the premature availability peak of its preferred fare. 
The laying date is not the only determinate in hatching date; synchrony 
can potentially be accomplished by reducing clutch size, by reducing 
the interval between laying of the last egg and incubation onset, or by 
reducing the overall time of incubation (Visser et al., 1998).

Additional examples of asynchrony between offspring birth 
and optimal nutrient availability have been reported in blue tits 
(Parus caeruleus) populations in France (Thomas, Blondel, Perret, 
Lambrechts, & Speakman, 2001). As in great tits, the blue tits use 
photoperiodic cues to commence breeding and reproduction and 
preferentially feed their young protein‐rich caterpillars. Global cli‐
mate change has led to an advancement in caterpillar development 
without a concurrent advancement in hatching of the blue tit; thus, 
this mismatch has increased the metabolic cost of rearing young 
tits beyond the sustainable adult limit. Coincidentally, and possibly 
causally related, there has been a drastic reduction in the number of 
adults in the breeding population.

Yet another example of how the increasingly warming climate 
has affected animals is the Greenland caribou (Rangifer tarandus). 
Caribou are seasonal migratory animals which use day length as a 
cue for migration to ranges that favor calf rearing due to peak read‐
iness of trophic resources. However, plant growth is cued by tem‐
perature, and as a result of warming over the years, now occurs in 
advance of caribou migration; thus, as in previous examples, creating 
a misalignment between offspring production, rearing, and peak re‐
source availability (Post & Forchhammer, 2008). The result of this 
disparity has been an overall reduction in progeny production with 
an increase in progeny mortality. A similar mismatch between mi‐
gration and food source availability due to climate change has been 
observed in the pied flycatchers of Western Europe (Both, 2010). 
Outside of breeding season, pied flycatchers (Ficedula hypoleuca) 

spend the year in Africa. Pied flycatchers use photoperiodic cues to 
prepare for and commence migration (Gwinner, 1996), thus trying to 
predict the initiation of spring at their breeding grounds in Western 
Europe. However, climate change has led to an advancement in the 
development and subsequent availability of caterpillars without a 
concurrent advancement in pied flycatchers' migration from Africa. 
This culminates in pied flycatcher chicks being fed a more varied and 
less nutrient‐rich diet, slowing their growth and reducing the num‐
ber of birds that survive and return as breeders.

Further examples of climate‐induced asynchrony between sea‐
sons and circannual events include alterations in predator–prey 
interactions. Specifically, a recent decline in snowshoe hare (Lepus 
americanus) populations has been attributed to coat color mismatch 
(Mills et al., 2013; Pedersen, Odden, & Pedersen, 2017). Snowshoe 
hares use photoperiod cues to regulate and initiate molting via 
melatonin and prolactin signaling (Zimova et al., 2018). However, 
increasing temperatures, and thus reductions in snow cover, has 
resulted in a disparity between snowshoe hare coat color and dark 
snowless habitats. Unfortunately, the snowshoe hare has limited 
plasticity in molting time, thus leading to a 7% decline in survival 
rates due to increased visibility to predators and culminating in 
population declines (Zimova et al., 2018; Zimova, Mills, Lukacs, & 
Mitchell, 2014; Zimova, Mills, & Nowak, 2016). Similar detrimental 
disparities between coat color and the environment due to climate 
change have been reported in the Alpine rock ptarmigan (Lagopus 
muta), the Arctic fox (Vulpes lagopus), and snow leopards (Panthera 
uncia) and are presumed to occur in other animals such as lemmings 
(Dicrostonyx), weasels (Mustela), and Arctic wolf (Canis lupus; Beltran, 
Burns, & Breed, 2018; Imperio, Bionda, Viterbi, & Provenzale, 2013; 
Zimova et al., 2018). Further examples encompassing disruption to 
aquatic animal phenophases, insect–plant interactions, and other 
cross‐kingdom interfaces have been elegantly reviewed in Donnelly 
et al. (2011).

Notably, most studies have examined the effects of climate 
change and a stable photoperiod on species inhabiting temperate 
and polar regions. Few studies have examined the effects of climate 
change, particularly alterations in photoperiod and precipitation, 
in subtropical and tropical species that time reproductive events 
during the rainy season (Bronson, 2009; Rissman, Nelson, Blank, & 
Bronson, 1987). Thus, future studies should examine the effects of 
climate change on reproduction and survival of subtropical and trop‐
ical species. Considering all things, it is undeniable that the ecolog‐
ical disruption left in the wake of global climate change can have a 
profound impact on species fitness and, ultimately, survival.

7  | ADAPTIVE RESPONSES TO CLIMATE 
CHANGE AND A STABLE PHOTOPERIOD

As previously discussed, asynchrony between temperature‐de‐
fined seasons and circannual events as a result of global climate 
change can have a profound impact on species fitness and survival. 
Therefore, some species have developed adaptive responses to 
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attempt to maintain synchrony. These adaptive responses include 
both phenotypic plasticity and heritable genetic changes. As previ‐
ously discussed, great tits (P. major) have recently been confronted 
with a significant evolutionary pressure to alter its reproductive 
phase to align with food availability (Visser et al., 1998). Notably, 
great tits demonstrate individual plasticity in reproduction timing 

(Nussey et al., 2005). As a result, natural selection has occurred to 
favor highly plastic individuals by maintaining the greatest lifetime 
breeding success. Therefore, continued selection based on plasticity 
of egg‐laying time may alleviate this mismatch between reproductive 
timing and food availability.

Additional examples of adaptive responses to maintain synchrony 
between reproductive timing and food availability include Canadian 
red squirrels (Tamiasciurus hudsonicus) advancing their reproduction 
time to match with earlier spruce cone production, as well as multi‐
ple bird species in the United Kingdom advancing their time of egg 
laying to synchronize with earlier onset of spring (Crick et al., 1997; 
Réale, Berteaux, McAdam, & Boutin, 2003). Further adaptations in 
behavior have been reported that help to synchronize winter plum‐
age mismatch in species of winter birds. For instance, rock ptarmi‐
gans (L. muta) in Canada dirty themselves when mismatched with 
snowless habitats, and Scandinavian willow ptarmigans (Lagopus 
lagopus) reportedly feed in areas that match their plumage, even 
when feeding grounds have inferior nutrients (Montgomerie, Lyon, 
& Holder, 2001; Steen, Erikstad, & Høidal, 1992). Notably, not all 
adaptations to maintain synchrony between temperatures, de‐
fined seasons and circannual events have occurred due to plastic 
phenotypes. Studies of pitcher‐plant mosquitos (Wyeomyia smithii) 
have demonstrated alterations in genetically controlled photoperi‐
odic cues to enter winter diapause (Bradshaw & Holzapfel, 2001). 
Specifically, over the past 30 years northern populations of the 
pitcher‐plant mosquitos have evolved a shorter critical photoperiod 
to initiate winter diapause. Additionally, studies have demonstrated 
genetic selection for reproductive photoresponsiveness in deer mice 
(Peromyscus maniculatus; Desjardins, Bronson, & Blank, 1986).

8  | CONCLUSIONS

It is indisputable that the Earth's surface temperature is rising and 
precipitation throughout the Earth is dynamic, and the cause of 
these shifts is likely anthropogenic in nature. Climate change has 
clear direct and indirect effects on both plants and animals, and 
it is possible that others exist which are yet unidentified or under 
examined. Of relevance, climate change in combination with a sta‐
ble photoperiod presents extreme organismal evolutionary pres‐
sure and when organisms are unable to adapt or flexibly adjust, 
the result has severe deleterious consequences for individual spe‐
cies reproduction and, therefore, for species survival (Figure 1). 
Depending on the organism, its habitat, its ability to adapt, and 
its interactions with other species, the growing misalignment 
among temperature, precipitation, and photoperiod can translate 
into a falling out of synchrony between organisms and their native 
ecosystem. Moreover, not only are organisms under evolutionary 
pressures from abiotic factors in their environment (i.e., temper‐
ature and precipitation changes), but they are also subjected to 
the effects that other organisms in their environments might have 
due to their response and ability to adapt to these environmen‐
tal changes. The ability of individuals to adapt will depend on the 

F I G U R E  1   Climate change has provoked a mismatch between 
seasons and animals' seasonal rhythms; specifically, climate change 
has often phase‐shifted the growing season (e.g., shortened 
winter) without concurrent changes to photoperiod. Coupled 
with the effects of light pollution, which prevents individuals of 
photoperiod‐responsive species from determining day lengths, 
climate change presents extreme evolutionary pressure that can 
result in deleterious consequences. Specifically, climate change 
reduces individuals' fitness by altering predator–prey interactions, 
mistiming reproduction and migration with optimal nutrient 
availability, and in combination with light at night alters metabolic 
and immune function
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plasticity of the mechanisms underlying photoperiodic time meas‐
urement. Lack of plasticity in these mechanisms will likely lead to 
local extinctions.
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