27 research outputs found

    Surface-based molecular self-assembly: Langmuir-Blodgett films of amphiphilic Ln(III) complexes

    No full text
    The unique photophysical properties of the Ln(III) series has led to significant research efforts being directed towards their application in sensors. However, for “real-life” applications, these sensors should ideally be immobilised onto surfaces without loss of function. The Langmuir-Blodgett (LB) technique offers a promising method in which to achieve such immobilisation. This mini-review focuses on synthetic strategies for film formation, the effect that film formation has on the physical properties of the Ln(III) amphiphile, and concludes with examples of Ln(III) LB films being used as sensors

    Shining a light on the photo-sensitisation of organic-inorganic hybrid polyoxometalates

    Get PDF
    Finding new ways of using visible light (or, more specifically, solar irradiation) to drive commercially significant and/or challenging chemical processes is an ongoing research goal. Polyoxometalates (POMs) are discrete, metal-oxide clusters which are cheap, robust and easily synthesized but can also act as versatile molecular building blocks, allowing for astonishing variety in their structures and properties. In particular, the rich redox chemistry and inherent photo-activity of POMs makes them attractive for use in a variety of photochemical applications however POMs characteristically only absorb strongly in the UV region. In this perspective, we discuss the various strategies which have been employed in order to sensitize POMs to visible light, with a particular focus on hybrid inorganic-organic POM species. We will discuss the two clear photo-activation mechanisms which have been developed to date and provide an outlook on some of the possible future directions of the field

    State-of-the-art and limitations in the life cycle assessment of ionic liquids

    Get PDF
    Even though the development and use of ionic liquids (ILs) has rapidly grown in recent years, in the literature, information addressing the environmental performance of these substances in a life cycle context is comparatively scarce. This review critiques the state-of-the-art environmental life cycle assessment (LCA) studies on ILs in the literature, identifies the existing shortcomings, which could be delaying complete employment of the LCA framework to the field of ILs, and also identifies strategies for overcoming these shortcomings. This review indicates that there are several limitations associated with the implementation of the LCA in all steps and discusses them. Since data about manufacturing at industrial scale are generally inaccessible, a set of methods and assumptions have been used in previous studies to determine the life cycle inventories (LCIs), such as simplified LCA, “tree life-cycle approach”, use of energy monitor devices, thermodynamic methods, chemical simulation process and other secondary data. However, the analysis of the data quality has not always been performed. Also, currently, there is a shortage of the characterization factors of ILs for human toxicity and ecotoxicity impact categories, which prevent its inclusion within the life cycle impact assessment (LCIA) step. Therefore, sufficient and complete life cycle inventory data for ionic liquids and precursor chemicals are essential for inventory analysis; and the LCIA needs to be clearly defined about the level of detail on the IL emissions. Current LCA studies on ILs have not covered all these aspects. To improve the present situation, it is proposed herein that for future LCA of processes involving ILs each of the LCA steps must be completed as far as scientific advances allow

    An integrated optical Bragg grating refractometer for volatile organic compound detection

    No full text
    We report an integrated optical Bragg grating detector, fabricated using a direct UV-writing approach, that when coated with a thin-film of a hydrophobic siloxane co-polymer can perform as an all-optically accessed detector for hydrocarbon vapour. Upon exposure to a series of organic solvent vapours, both negative and positive Bragg wavelength shifts of differing magnitudes were measured. This was attributed to a combination of swelling and/or hydrocarbon solvent filling the free volume within the polymer film. A quantitative structural property relationship (QSPR) approach was utilised to create a multiple variable linear regression model, built from parameters that chemically described the hydrocarbons and the intermolecular interactions present between the co-polymer and hydrocarbon molecules. The resulting linear regression model indicated that the degree of swelling of the polysiloxane thin film when exposed to vapours of different hydrocarbons was due to the physico-chemical properties of the hydrocarbons and that this was the main causative factor of the measured Bragg wavelength shifts. Furthermore, this linear regression model allows for the prediction of the Bragg wavelength shift that would be measured upon exposure to vapours of another defined hydrocarbon. This detector is intrinsically safe in flammable environments. It includes on-chip thermal compensation, operates at telecoms wavelengths and has a predictable response to a variety of hydrocarbons making it ideal for detection of flammable hydrocarbon vapours in industrial and domestic processes

    Novel low energy hydrogen–deuterium isotope breakthrough separation using a trapdoor zeolite

    Get PDF
    AbstractCs-chabazite, a type of zeolite with caesium counter-cations, possesses interesting gas separation properties due to a highly selective molecular “trapdoor” effect. Herein the use of this material for H2/D2 isotope separation is demonstrated. Isotope separation was achieved using breakthrough separation with a single pass through a packed bed at moderate temperatures (293K) and pressures (0.17MPa) when one species was in a sufficiently low concentration. The breakthrough separation curves were successfully modelled using the Thomas kinetic breakthrough model and the Yoon and Nelson kinetic breakthrough model, where working transferable kinetic rate constants were developed. Use of this material for hydrogen isotope separation would significantly lower the total energy demand compared with current hydrogen isotope separation techniques such as cryogenic distillation and is applicable to separating out low concentrations of D2 (0.0156%) present in standard grade H2

    Decoupling manufacturing from application in additive manufactured antimicrobial materials

    Get PDF
    3D printable materials based on polymeric ionic liquids (PILs) capable of controlling the synthesis and stabilisation of silver nanoparticles (AgNPs) and their synergistic antimicrobial activity are reported. The interaction of the ionic liquid moieties with the silver precursor enabled the controlled in situ formation and stabilisation of AgNPs via extended UV photoreduction after the printing process, thus demonstrating an effective decoupling of the device manufacturing from the on-demand generation of nanomaterials, which avoids the potential aging of the nanomaterials through oxidation. The printed devices showed a multi-functional and tuneable microbicidal activity against Gram positive (B. subtilis) and Gram negative (E. coli) bacteria and against the mould Aspergillus niger. While the polymeric material alone was found to be bacteriostatic, the AgNPs conferred bactericidal properties to the material. Combining PIL-based materials with functionalities, such as in situ and photoactivated on-demand fabricated antimicrobial AgNPs, provides a synergistic functionality that could be harnessed for a variety of applications, especially when coupled to the freedom of design inherent to additive manufacturing techniques

    Tracking a photo-switchable surface-localised supramolecular interaction via refractive index

    No full text
    As supramolecular chemistry evolves, from the design of interactions in the solution and the solid state to applications at surfaces, there is a need for the development of analytical techniques capable of directly interrogating surface-localised supramolecular interactions. We present a proof-of-concept integrated optical Bragg grating sensor, capable of evanescently detecting small changes in refractive index at infrared wavelengths within a microfluidic system. The high spectral fidelity of the Bragg gratings combined with precise thermal compensation enables direct monitoring of the surface throughout the experiment, enabling the sensor to probe changes in situ and in real-time during surface preparation and chemical modification, and then to follow the progress of a dynamic surface-localised supramolecular interaction. In this study the sensor is assessed through the investigation of a photo-switchable inclusion complex between an azobenzene-functionalised surface and cyclodextrin in aqueous solution. The ability to investigate supramolecular interactions directly in real-time upon a planar surface via refractive index offers a valuable new tool in the understanding of complex dynamic supramolecular systems

    Environmental performance of 3D-printing polymerisable ionic liquids

    Get PDF
    This work presents a “cradle-to-gate” Life Cycle Assessment (LCA) of 3D-printing polymerisable ionic liquids (PILs) using digital light projection (DLP). It is based on primary data from environmental emissions, wastewater, chemical components, and manufacturing of PIL based devices. The results indicate that the printing process does not significantly exacerbate the environmental impacts. However, it is shown that excellent opportunities for further mitigation of the life cycle impacts of PILs can be realised are by practising reagent recovery, which reduces the amount of reagents emitted as waste, and by reduction/recycling of solvents used for cleaning the 3D part. The major impact contributor in the 3D-printing of PILs is the synthesis of the IL monomers. The effective reduction of solvent consumption and recovery significantly improves the impact of the synthetic process. This work focuses on the employment of the 3-butyl-1-vinylimidazolium [BVim] cation, with the non-coordinating and hydrophobic bis(trifluoromethane)sulfonimide [NTf2]- anion as the counter anion. The polymerisable monomer IL has comparable impact compared to the analogous non-polymerisable 3-butyl-1-methylimidazolium [NTf2]- ionic liquid, thus potentially allowing for the more efficient use of the ionic liquid properties by immobilization in solid phases. Furthermore, it is demonstrated that switching the anion from [NTf2]- to dicyanamide [N(CN2)]- significantly decreases the impacts in all categories evaluated for PIL production. This work represents the first phase toward quantitative LCA data generation for the process of 3D-printing ionic liquids, which will be great support for decision making during design of PIL 3D-printing processes at a laboratory scale
    corecore