2,423 research outputs found

    Laser-light scattering approach to peptide–membrane interaction

    Get PDF
    © International University Line, 2010Membrane-active peptides are becoming widely used, mainly due to their high therapeutic potential. Although the therapeutic action is characterized, the mechanisms of interaction are often unclear or controversial. In biophysical studies, non-invasive techniques are overlooked when studying the effect of peptides on membranes. Light scattering techniques, such as dynamic light scattering and static light scattering, can be used as tools to determine whether promotion of membrane aggregation in the presence of peptides and of self-peptide aggregation in solution occurs. More recently, light scattering has been used for evaluating the alteration on membrane surface charge (ζ-potential) promoted by membrane–peptide interactions. The data obtained by these techniques (either by themselves or combined with complementary experimental approaches) therefore yield valuable elucidations of membrane-active peptides’ mechanisms of action at the molecular level.This work was partially supported by the Fundação para a Ciência e Tecnologia (FCT) of the Portuguese Ministry of Science, Technology and Higher Education. M.M.D. acknowledges the grant SFRH/BD/41750/2007 from FCT

    Translocating the blood-brain barrier using electrostatics

    Get PDF
    Copyright © 2012 Ribeiro,Domingues, Freire,Santos and Castanho. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.Mammalian cell membranes regulate homeostasis, protein activity, and cell signaling. The charge at the membrane surface has been correlated with these key events. Although mammalian cells are known to be slightly anionic, quantitative information on the membrane charge and the importance of electrostatic interactions in pharmacokinetics and pharmacodynamics remain elusive. Recently, we reported for the first time that brain endothelial cells (EC) are more negatively charged than human umbilical cord cells, using zeta-potential measurements by dynamic light scattering. Here, we hypothesize that anionicity is a key feature of the blood-brain barrier (BBB) and contributes to select which compounds cross into the brain. For the sake of comparison, we also studied the membrane surface charge of blood components—red blood cells (RBC), platelets, and peripheral blood mononuclear cells (PBMC).To further quantitatively correlate the negative zeta-potential values with membrane charge density, model membranes with different percentages of anionic lipids were also evaluated. From all the cells tested, brain cell membranes are the most anionic and those having their lipids mostly exposed, which explains why lipophilic cationic compounds are more prone to cross the blood-brain barrier.Fundação para a Ciência e Tecnologia — Ministério da Educação e Ciência (FCT-MEC, Portugal) is acknowledged for funding (including fellowships SFRH/BD/42158/2007 to Marta M.B. Ribeiro, SFRH/BD/41750/2007 to Marco M. Domingues and SFRH/BD/70423/2010 to João M. Freire) and project PTDC/QUI-BIQ/119509/2010. Marie Curie Industry-Academia Partnerships and Pathways (European Commission) is also acknowledged for funding (FP7-PEOPLE-2007-3-1-IAPP, Project 230654)

    Pediatric ocular rosacea, a misdiagnosed disease with high morbidity: Proposed diagnostic criteria

    Get PDF
    Ocular rosacea is an important and underdiagnosed chronic inflammatory disorder observed in children. A clinical spectrum ranging from chronic eyelid inflammation, recurrent ocular redness, photophobia and/or hordeola/chalazions and conjunctival/corneal phlyctenules evolving to neovascularization and scarring may occur. Visual impairment and consequent amblyopia are frequent and corneal perforation although rare is the most feared complication. Ocular manifestations usually precede cutaneous lesions. Although few cases of pediatric ocular rosacea (POR) have been reported in the literature, many cases must have been underdiagnosed or misdiagnosed. The delay in diagnosis is greater than one year in the large majority of cases and may lead to serious ocular sequelae. This review aims to highlight the clinical features of POR, its epidemiology, easy diagnosis and effective treatment. We also propose new diagnostic criteria, in which at least three of the five clinical criteria must be present: (1) Chronic or recurrent keratoconjunctivitis and/or red eye and/or photophobia; (2) Chronic or recurrent blepharitis and/or chalazia/ hordeola; (3) Eyelid telangiectasia documented by an ophthalmologist; (4) Primary periorificial dermatitis and/ or primary features of rosacea; and (5) Positive familial history of cutaneous and/or ocular rosacea

    SAMplus: adaptive optics at optical wavelengths for SOAR

    Full text link
    Adaptive Optics (AO) is an innovative technique that substantially improves the optical performance of ground-based telescopes. The SOAR Adaptive Module (SAM) is a laser-assisted AO instrument, designed to compensate ground-layer atmospheric turbulence in near-IR and visible wavelengths over a large Field of View. Here we detail our proposal to upgrade SAM, dubbed SAMplus, that is focused on enhancing its performance in visible wavelengths and increasing the instrument reliability. As an illustration, for a seeing of 0.62 arcsec at 500 nm and a typical turbulence profile, current SAM improves the PSF FWHM to 0.40 arcsec, and with the upgrade we expect to deliver images with a FWHM of 0.34\approx0.34 arcsec -- up to 0.23 arcsec FWHM PSF under good seeing conditions. Such capabilities will be fully integrated with the latest SAM instruments, putting SOAR in an unique position as observatory facility.Comment: To appear in Proc. SPIE 10703 (Ground-based and Airborne Instrumentation for Astronomy VII; SPIEastro18

    Tailoring: A case study on the application of the seventh principle of PMBOK 7 in a public institution

    Get PDF
    In the 7th edition of PMBOK the Tailoring process is legitimized as an essential ally in project management, since it makes several adjustments throughout the project's life cycle to provide the best possible environment to achieve the deliverables and the value added to the organization. Tailoring as a principle further highlights the unique nature of each project and the need to carry out this process continuously. Based on a unique case study, the beginning of the management functions in a sector of a public organization is discussed, as well as the adaptations made to optimize the workflow and productivity in the deliverables. From this investigation results the proposal of a framework adapted to the needs of the institution, as a starting point for the professionalization of project management.info:eu-repo/semantics/publishedVersio

    An open and parallel multiresolution framework using block-based adaptive grids

    Full text link
    A numerical approach for solving evolutionary partial differential equations in two and three space dimensions on block-based adaptive grids is presented. The numerical discretization is based on high-order, central finite-differences and explicit time integration. Grid refinement and coarsening are triggered by multiresolution analysis, i.e. thresholding of wavelet coefficients, which allow controlling the precision of the adaptive approximation of the solution with respect to uniform grid computations. The implementation of the scheme is fully parallel using MPI with a hybrid data structure. Load balancing relies on space filling curves techniques. Validation tests for 2D advection equations allow to assess the precision and performance of the developed code. Computations of the compressible Navier-Stokes equations for a temporally developing 2D mixing layer illustrate the properties of the code for nonlinear multi-scale problems. The code is open source

    Virtual laboratories in (bio)chemical engineering education

    Get PDF
    In the last decades, Information and Communications Technologies (ICT) have been promoting the creation and adoption of new learning and teaching styles. Virtual laboratories, by overcoming some limitations of conventional hands-on experiments, have been adopted as a complement or in substitution of laboratory sessions. This paper describes the design and implementation of two virtual labs for biochemical engineering education intended for students at the BSc degree. One of the virtual labs is intended to fully replace the hands-on experiment and consists on the determination of the correlation between oxygen transfer rate, aeration rate and agitation power in a reactor. The other virtual lab consists on the determination of the residence time distribution (RTD) in continuous stirred tanks series and was implemented to support the physical experiments rather than replacing them. The virtual labs provide the students a learning platform covering the fundamentals underlying the experiment, its pre-visualization and simulation. The effectiveness of the implemented system was evaluated through direct experimentation and survey (through questionnaires) with students taking the chemical technology lab course. For the RTD virtual Lab, and based on specific learning outcomes, teachers could assess significant improvement in students’ performance in the lab and also a more thorough discussion of the results in the reports. The survey results show that, in average, considering the two virtual labs and several classes, 93% of the students consider the virtual labs of great utility.Universidade do Minho (UM) - “Programa Qualidade

    Lipoxidation and cancer immunity

    Get PDF
    Lipoxidation is a well-known reaction between electrophilic carbonyl species, formed during oxidation of lipids, and specific proteins that, in most cases, causes an alteration in proteins function. This can occur under physiological conditions but, in many cases, it has been associated to pathological process, including cancer. Lipoxidation may have an effect in cancer development through their effects in tumour cells, as well as through the alteration of immune components and the consequent modulation of the immune response. The formation of protein adducts affects different proteins in cancer, triggering different mechanism, such as proliferation, cell differentiation and apoptosis, among others, altering cancer progression. The divergent results obtained documented that the formation of lipoxidation adducts can have either anti-carcinogenic or pro-carcinogenic effects, depending on the cell type affected and the specific adduct formed. Moreover, lipoxidation adducts may alter the immune response, consequently causing either positive or negative alterations in cancer progression. Therefore, in this review, we summarize the effects of lipoxidation adducts in cancer cells and immune components and their consequences in the evolution of different types of cancer.publishe

    Virtual laboratories in (bio)chemical engineering education

    Get PDF
    "Qualidade” of the Universidade do Minho
    corecore