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A B S T R A C T

Lipoxidation is a well-known reaction between electrophilic carbonyl species, formed during oxidation of lipids,
and specific proteins that, in most cases, causes an alteration in proteins function. This can occur under phy-
siological conditions but, in many cases, it has been associated to pathological process, including cancer.
Lipoxidation may have an effect in cancer development through their effects in tumour cells, as well as through
the alteration of immune components and the consequent modulation of the immune response. The formation of
protein adducts affects different proteins in cancer, triggering different mechanism, such as proliferation, cell
differentiation and apoptosis, among others, altering cancer progression. The divergent results obtained docu-
mented that the formation of lipoxidation adducts can have either anti-carcinogenic or pro-carcinogenic effects,
depending on the cell type affected and the specific adduct formed. Moreover, lipoxidation adducts may alter the
immune response, consequently causing either positive or negative alterations in cancer progression. Therefore,
in this review, we summarize the effects of lipoxidation adducts in cancer cells and immune components and
their consequences in the evolution of different types of cancer.

1. Introduction

Oxidative stress is usually associated with an increase of reactive
oxygen species (ROS), or a decrease on the antioxidant defences which,
in turn, can favour the peroxidation of the polyunsaturated fatty acids
(PUFAs) in membrane lipid bilayers, leading eventually to the forma-
tion of highly reactive aldehydes [1]. These electrophilic reactive al-
dehydes can spread from the site of origin and react with major bio-
molecules, like proteins, even at distant sites [2], causing a lipoxidation
process. Lipoxidation is a well-known reaction between electrophilic
carbonyl lipids species formed during oxidation of lipids and specific
proteins [3].

Lipid oxidation products may accumulate and covalently modify
proteins, driving not only to physiological but also to pathological
process through altering protein structure and function or changing
signalling pathways. This has an effect in different pathologies such as
cancer, in which lipid oxidation products may influence cancer pro-
gression either directly, through the modulation of cancer cells beha-
viour, or through the modulation of the immune response (Fig. 1) [4].

The biological effects of reactive lipid carbonyl species generated by
lipid peroxidation process are modulated by their local concentration
and availability, which depends on the initial lipid targeted by perox-
idation, as well as on the presence of cellular detoxifying and con-
jugating systems, and the cell ability to degrade modified proteins [5].
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Also, quite important as well, depending on the type of protein mod-
ified, different effects can occur in the physiologic or the pathophy-
siologic signalling [6].

Oxidative modified molecules, including lipoxidation adducts, are
also reported to have a significant role in the modulation of in-
flammation and immune response. They can induce adaptive immunity
and have been implicated in the pathogenesis of various diseases [7]. In
fact, it has been reported that the covalent reaction of electrophilic
aldehydic products with proteins might lead to the formation of im-
munogenic biomolecules [8], and these lipoxidation products may alter
the cellular signalling in the immune response in several pathologies,
including cancer [9]. Moreover, it is well established that the immune
system plays a very important role in cancer progression. In this regard,
several studies in the past few years have demonstrated a dual role of
leukocytes themselves contributing to either “pro-tumour” micro-
environment or to “anti-tumour” microenvironment [10].

In this review, we will discuss and summarize the most recent ad-
vances in lipoxidation formation and its influence on the pathophy-
siology of cancer. We will also highlight the effect of lipoxidation in
tumour and immune cells during cancer progression.

2. Chemistry of lipoxidation adducts and its relevance in disease
pathophysiology

The unsaturated fatty acid are main targets of oxygen radicals
leading to the formation of primary peroxidation products. These oxi-
dized lipids can be decomposed to form secondary peroxidation pro-
ducts (carbonyl-based derivatives), and can react by addition reactions
of the carbonyl groups (electrophiles) with amino and thiol groups
(nucleophiles), leading to the formation of lipid-protein adducts or li-
poxidation products [11] (Fig. 1). The aldehydes and other electrophilic
carbonyl species generated will depend on the initial PUFA targeted by
peroxidation. In this sense, the peroxidation of n-3 PUFAs (α-linolenic
acid and docosahexaenoic acid) generates mainly 4-hydroxy-hexenal
(4-HHE), while the peroxidation of n-6 PUFAs, such as linoleic acid and
arachidonic acid, generates mostly 4-hydroxy-2-nonenal (HNE), which
is the most intensively studied electrophilic reactive aldehyde [12–14].
The type of adducts that can be generated depends on the reactivity of
the oxidized lipid species. In addition, the reaction of these compounds
with a protein can take place by two principal reactions: (i) the addition
of the aldehydic group to an amino group of the protein (e.g. lysine)
forming a Schiff´s base adduct by loss of water and (ii) by a Michael
addition to a nucleophile by the active C˭C double bond [3,9]. While

Fig. 1. Diagram illustrating the formation of lipoxidation adducts and their possible effects on the progression of cancer.
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Schiff base formation is reversible, Michael adducts are quite stable,
thus the formation of the latter seems to be preferred in vivo. It is also
important to consider that lipoxidation depends on the balance of the
rate of formation of the lipid oxidation product, its reactivity, and the
rate of detoxification by enzymes such as glutathione peroxidases [15],
glutathione S-transferasaes (GST) [16], or aldo-keto reductases (AKR)
[17].

Lipoxidation can occur in healthy individuals [18,19], since protein
modification by reactive electrophilic species not only may inhibit
protein function, but also, in a small number of cases, may cause a gain
of function, even leading to beneficial effects [20–22].

Nevertheless, the importance of lipoxidation and its pathophysio-
logical relevance have been broadly discussed in several works
[14,23–26]. In fact, the measurement of global protein adducts, such as
HNE-protein adducts, is commonly used as a biomarker of inflamma-
tion/oxidative stress/lipid peroxidation under various pathological
conditions [27]. The accumulation of lipid peroxidation products, and
therefore of lipoxidation adducts, has been involved in ageing and in
well-defined diseases of liver, kidney, neurological and cardiovascular
systems, endocrine and metabolic disorders, diabetes and its compli-
cations, and other oxidative stress related pathologies [28].

Furthermore, lipoxidation is highly associated with chronic degen-
erative diseases such as cancer. These topics will be discussed in the
following section.

3. Lipoxidation in cancer: Effect on tumour and immune cells

Carcinogenesis and cancer therapies are strongly influenced by
oxidative stress and by lipid peroxidation [28] and, consequently, by
lipoxidation adducts. The most reported reactive carbonyl products
formed during lipid peroxidation are malondialdehyde (MDA), acrolein
(ACR), 4-hydroxy-hexenal (4-HHE) and 4-hydroxy-2-nonenal (HNE)
[29], and several studies reported the formation of protein adducts with
several proteins in different types of cancer [30–33]. In fact, the greater
reactivity of HNE, one of the major products of lipid peroxidation, with
proteins, gave rise to the assumption that HNE has a cytotoxic and
carcinogenic effect through the modulation of proteins involved in DNA
repair [34]. Moreover, other works demonstrated that oxidative stress
and electrophilic lipid peroxidation products, such as HNE, also play
important roles in the induction of cell cycle arrest, differentiation
process, and apoptosis in cancer cells [35]. However, some studies
show controversial results regarding the influence of HNE, or HNE-
adducts in different types of human cancers [36–39], and the pattern of
HNE histological appearance has been shown to be dependent on the
histological origin of cancer [40].

Likewise, cancer cells are sensitive to lipid oxidation products since
these products act as second toxic messengers of free radicals, as well as
signalling molecules and growth regulating factors that influence im-
portant processes for cancer progression such as proliferation, differ-
entiation and apoptosis [28]. But there are discrepancies in the ap-
pearance of lipoxidation adducts in distinct cancer types. For example,
in hepatoma cells, it was shown that the majority of HNE was converted
to the HNE-GSH conjugate, which was rapidly and efficiently exported
from the cell [41]. However, in astrocytic and ependymal glial tumours,
HNE-protein adducts were detected in mitotic, necrotic and apoptotic
cells, and were associated with increasing grades of malignancy [42].

The disparity observed in the formation of lipoxidation adducts in
various tumours may be explained by: a) the different membrane
composition of lipids in different cancer cell types, as well as different
cholesterol/PUFAs ratios, which determine different tendencies to form
lipid peroxidation products and, therefore, different electrophilic lipids
and, thus, different lipoxidation adducts [43]; b) the higher expression
of detoxification enzymes and antioxidant proteins observed in some
tumour cells, what results in a more efficient and rapid metabolism of
lipid peroxidation products [44]; c) the different effects, either phy-
siological or pathological, triggered by some lipid peroxidation

products, that act through the antioxidant response element (ARE) to
induce the expression of key metabolizing enzymes, such as GST [45],
influencing on Keap1–Nrf2–ARE pathway [46,47]; d) the local of for-
mation and e) the targeted protein or enzyme that are adducted to the
electrophilic lipid.

3.1. Effect of lipoxidation in tumour cells

As it was mentioned above, the level of oxidative stress and, con-
sequently, the level of lipoxidation products vary among cancer types in
relation with cell type. In liver cancer, it was found lower levels of lipid
peroxidation products in hepatoma cells when compared to normal
liver cells [48,49], probably leading to lower levels of lipoxidation
products, what can be explained, in part, by the observed increase in
the activity of enzymes metabolizing toxic aldehydes during rat liver
carcinogenesis [50], thus rendering the cancer cells more protected
against the cytotoxic effect of lipoxidation products.

Several enzymes involved in tumour resistance due to their ability
to metabolize electrophilic lipids are, at the same time, targets for li-
poxidation themselves. This is the case of AKR that catalyse the re-
duction of ketones and aldehydes [51] or GST enzymes that are in-
volved in drug detoxification [3]. AKR1B10, a member of AKR family,
is overexpressed in several types of tumours, and it may contribute to
tumorigenesis through various mechanisms, in addition to be involved
in chemoresistance [52,53]. This protein is a selective target for li-
poxidation and inhibition by A-class cyclopentenone prostaglandins
(cyPG) and it has been demonstrated that low concentrations of pros-
taglandin A1 (PGA1) potentiate the intracellular accumulation and G2/
M cell cycle arresting effect of the topoisomerase inhibitor doxorubicin
in A549 lung cancer cells [54,55]. Due to their electrophilic nature,
cyPG may form Michael adducts with GSH both enzymatically, through
the action of GSTs, and non-enzymatically [56,57]. Likewise, it has
been found HNE adducts with GST detected by immunoprecipitation of
GST followed by Western blot analysis using anti-HNE antibody [58].
On the top of that, GSTP1-1, a very important enzyme in tumour che-
moresistance, can be covalently bound by various electrophilic lipids,
including PGA1 and PGA2, causing its inactivation [22,59,60]. Hence,
lipoxidation of GSTP1-1 could help to overcome the resistance of cer-
tain tumour cells to chemotherapy or radiation [55,61].

On the other hand, lipoxidation adducts were found in renal [62],
and colon cancer cells [63], as well as in astrocytic and ependymal glial
tumours, in which the incidence of HNE-positive tumour cells increased
with increasing grades of malignancy [42]. Although the amount of
lipoxidation products in cancer cells, like HNE-protein adducts, has
been often assayed as a means of assessing the level of oxidative stress,
only in some cases the identification and the consequences of HNE-
protein adduct formation on cancer cell growth or behaviour have been
reported [14].

We have summarized the effect of HNE-protein adducts in distinct
cancer cell lines, such as human epidermoid carcinoma, leukemic cells,
adenocarcinoma human alveolar basal epithelial, breast cancer cells, or
colon cancer cells, reported by different studies [64–71], in Fig. 2. Both
endogenous and exogenous HNE lead to lipoxidation adducts with
many diverse proteins such as epidermal growth factor receptor
(EGFR), α-enolase, peptidylprolyl cis/trans-isomerase A1 (Pin1), liver
kinase B1 (LKB1), IĸB kinase (IKK), or glutamate cysteine ligase (GCL),
triggering different effects very important in avoiding cancer progres-
sion, such as suppression of cell growth, reduction of metastatic capa-
city or anti-proliferative effects, but also in other cases triggering effects
that favour cancer progression, as the modulation of tumour micro-
environment to become more pro-tumorigenic or the cytoprotective
response in cancer cells (Fig. 2).

Moreover, other studies have shown that the formation of HNE
protein adducts in renal and colon cancer tissues has been related to the
growth and progression of kidney and colon cancer [30], although the
progression of colon cancer results in loss of lipoxidation adducts in the
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malignant tissue and increase of reactive aldehydes in the surrounding
area [31]. In accordance with these results, a different study in prostate
cancer showed that ACR protein adducts could be associated with tu-
mour progression and recurrence [32]. Moreover, tumour tissues in
lung cancer showed lower antioxidant capacity than healthy tissues,
which was accompanied by lower levels of fatty acids and higher levels
of reactive aldehydes detected in the necrotic and stromal cells in these
tumours, thus favouring the formation of lipoxidation products like the
HNE-His protein adducts observed in necrotic lung cancer tissues [33].

Protein adducts are also involved in the inactivation of the protea-
some [72], which is responsible for the intracellular degradation of
proteins, whether they are damaged or no longer required for cellular
processes [73]. Proteasome is then essential for many cellular path-
ways, including cell cycle, regulation of gene expression and resistance
to oxidative stress. Therefore, protein lipoxidation adducts could alter
carcinogenesis through their effect in the inactivation of the protea-
some since cross-linked proteins are able to inhibit the proteasome, and
further impair cellular protein turnover [74]. In fact, there are some
studies showing that proteasome inhibitors induce apoptosis in leu-
kemic cell lines, turning the proteasome into one of the possible targets
with potential for therapeutic agents against cancer [75–77].

It is important to remark that, in several cases, the progression of
malignancy is accompanied by reductions of oxidative stress, due to the
upregulation of antioxidant capacity [78], and the induction of the
Nfr2/Keap1 pathway, which negatively regulates the HNE intracellular
concentration [79]. This also matches with the results showing that the
adaptation to intrinsic oxidative stress in cancer cells can confer drug
resistance. Thus, anticancer drugs and radiotherapy can induce oxida-
tive stress and trigger cancer cells to undergo apoptosis, however some
cancer cells escape from this process through the adaptation to intrinsic
oxidative stress [34]. On the other hand, despite the reduction of in-
trinsic oxidative stress, the level of lipoxidation products in cancer cells
may increase, due to the inflammatory response present in the tissues
surrounding cancer lesions [14].

Transcription factors of the peroxisome proliferator activated re-
ceptors (PPARs) family play a key role both in tumour biology and in
immune function [80]. The mechanisms reported so far suggest that
each PPAR isotype is associated with pathways that relate to carcino-
genesis due to direct effect in the cancer cells themselves, since they are
involved in the control of cell proliferation, cell differentiation and
apoptosis [81,82]. But in addition to these functions, PPARs may act on
the tumour environment by regulating inflammatory processes
[83–85]. This family of nuclear receptors is also a target of lipoxidation
processes. It has been demonstrated that 15-deoxyΔ12–14 PGJ2 (15d-
PGJ2) binds covalently to a cysteine residue located in the PPARγ ligand

binding pocket [86–88]. Further on, it was shown that 15d-PGJ2 acti-
vates PPARδ’s transcriptional activity through formation of a covalent
adduct between its endocyclic enone at C9 and Cys249 in the receptor's
ligand-binding domain [89]. In addition, HNE has been reported as an
endogenous ligand for PPARβ/δ that causes its activation [90].

The divergent results obtained documented that the formation of
lipoxidation adducts can have either anti-carcinogenic or pro-carcino-
genic effects, depending on the cell type affected and the specific ad-
duct formed [14]. The abundance of a protein, as well as the high re-
activity and accessibility of some nucleophilic sites, may determine if a
protein becomes, or not, a lipoxidation target [91,92]. Moreover, de-
pending on the nature/structure of the lipid oxidation product, which
could have different structural features and, as well, different reactivity,
it may lead to the formation of different types of lipoxidation adducts
and thus to different functional consequences in the targeted protein
[22,93,94]. In fact, it has been shown that biotinylated cyPG mimic
many of the effects of cyPG in cellular models, including inhibition of
inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2),
and induction of HO-1 and Hsp70 expression, but they are unable to
elicit PPAR activation in vitro or in intact cells [95,96]. Hence, by
adding a bulky moiety to the carboxyl group of cyPG, it may be possible
to dissociate some biological actions [97]. More studies are needed to
disclose these effects depending on the type of cancer, their stage, the
implicated targeted protein, or the reactive species involved.

3.2. Effect of lipoxidation on immune cells and their correlation with cancer

Chronic inflammatory processes induce oxidative/nitrosative stress
and, as consequence, lipid peroxidation products and lipoxidation
processes. In addition, it has been described that different chronic in-
flammatory conditions pre-dispose susceptible cells to malignant
transformation and cancer progression [28], so that it has been esti-
mated that chronic infection and associated inflammation contribute to
about one in four of all cancer cases worldwide [98].

ROS, reactive nitrogen species (RNS) and lipid peroxidation pro-
ducts can modulate signalling molecules [99] and alter functions of
proteins involved in inflammation and carcinogenesis [100], such as
the nuclear transcription factor NFκB or stress response enzymes,
namely iNOS and COX-2 [101,102]. Furthermore, it has been reported
that non-enzymatic oxidative modification of proteins, including li-
poxidation, renders proteins immunogenic and leads to the generation
of antibodies against oxidatively modified proteins [8,103].

In fact, aldehydes exert a dual effect on inflammatory signalling,
mainly depending on the concentration levels. On the one hand, at low
concentrations, HNE activates PKCβ-signalling, inducing the

Fig. 2. Summary of the possible effects of HNE-protein adducts on different proteins and different cancer cell lines.
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production and secretion of CCL2 (MCP-1) by macrophages [104]. On
the other hand, high concentrations of reactive aldehydes, such as HNE
or ACR, inhibit the activation of NFκB, either via a direct inhibitory
effect on proteasome, or via inhibition of the phosphorylation of in-
hibitor of kappaB (IκB) and its subsequent proteolysis [105], or a
modification of IκB kinase (IKK) β -sub-unit by aldehydes [106] that has
also been found to be a target of cyPG (Fig. 3) [107]. Moreover, 4-HHE
activates the IKK, via the IKK/NFκB inducing kinase (NIK) pathway,
through the increase in the activity of p38 MAPK and ERK1/2 kinase,
resulting in NFκB activation [108]. In contrast, it has been described
that cyPG can directly modify NFκB subunits p65 and p50, leading to
NFκB inhibition by blocking its ability to bind DNA, studied by im-
munohistochemistry and Western blot analysis (Fig. 3) [109,110].
Moreover, it has been proposed a role for 15d-PGJ2 in the control of
lymphocyte proliferation and activation through mechanisms relying
on NFκB inhibition, studied in knockout mice for hematopoietic pros-
taglandin D2 synthase (hPGD2s), which metabolizes cyclooxygenase
(COX)-derived PGH2 to PGD2 and 15d-PGJ2 [111]. Furthermore, it was
shown that 15d-PGJ2 controlled the balance of pro- vs. anti-in-
flammatory cytokines regulating leukocyte influx and macrophage ef-
flux through draining lymphatics [112]. This is very important for
cancer progression since NF-κB activation promotes the accumulation
of pro-inflammatory cytokines at the tumour site, contributing to the
pro-tumorigenic microenvironment. The activation of this transcription
factor has been associated with tumour cells proliferation, suppression
of apoptosis, angiogenesis and epithelial-mesenchymal transition,
which facilitates distant metastasis [113].

Additionally, it has been demonstrated that PPAR-α ligands and
PPAR-γ ligands (15d-PGJ2) inhibit cell growth and induce monocytic
differentiation in human promyelocytic leukemia cells (HL-60 cells),
and HNE, which alone induces granulocytic-like differentiation of HL-
60 cells, potentiates the monocytic differentiation induced by 15d-
PGJ2. Moreover, HNE treatment significantly inhibits U937 (human
histiocytic lymphoma) cell growth and potentiates the inhibition of cell
growth in PPAR-γ ligand-treated cells [68]. And, in addition, it has been
reported that HNE can form adducts with cysteine residues in the ex-
tracellular domain of TLR4 peptides, demonstrated by LC–MS/MS
analysis, inhibiting its activation [114]. Hence, the formation of li-
poxidation adducts with HNE can differentially regulate the activation
of TLR4 and subsequently provoking an effect in the immune response.

It has been shown that both MDA-adducted mouse serum albumin
(MSA) and HNE–MSA were able to significantly promote CD4+ T cell
proliferation, leading to the hypothesis that lipoxidation adducts, could
serve as an immunological trigger in the activation of CD4+ T cells.
Moreover, it has been suggested that lipid peroxidation derived alde-
hydes preferentially promote Th1 differentiation, analysed by flow
cytometry and ELISA in splenic lymphocytes from trichloroethene-
treated mice [115]. In that sense, we could consider lipoxidation ad-
ducts a positive factor since Th1 cells have been associated with the

promotion of anti-tumour responses: Th1 cells enhance the cytotoxic
functions of NK and CD8+ cells, upregulate MHC Class I expression in
tumour cells, and support CD8+ cell proliferation through the secretion
of IL-2 [116].

Regarding monocytes function, it has been suggested that synthetic
MDA-Lys, used as a prototype of advanced lipoxidation end products,
can promote monocyte activation and vascular complications via the
induction of inflammatory pathways and networks. In a candidate gene
profiling approach, MDA-Lys increased the expression of key NFκB-
dependent genes, such as MCP-1, iNOS, RAGE, IP-10, CCR-2, IL-6, IL-8,
and COX-2 that are associated with monocyte activation. Antibody
array profiling revealed that MDA-Lys can upregulate the chemokines
CCL11 (eotaxin), TNFSF14, and CCL18. In addition, key factors that
were noted to be induced by MDA-Lys, such as MCP-1, eotaxin, IL-6, IL-
8, β1- and β2-integrins, and COX-2, are associated with monocyte ac-
tivation, adhesion, and migration [117].

Neutrophils mediate key components of the cellular immune re-
sponse which involves cellular adhesion, migration, phagocytosis and
degradation and turnover of phagocytic metabolites [118]. It has been
demonstrated, by mass spectrometry analyses, the existence of lipox-
idation adducts of HNE with proteins involved in key pathways of
neutrophil oxidative burst, phagocytosis, redox homeostasis and glu-
cose metabolism. The same study also confirmed the formation of
neutrophil protein-HNE adducts using candidate proteins found to be
modified, by mass spectrometry. Taken together, these data suggest
that HNE induces a pleiotropic mechanism to inhibit neutrophil func-
tion [119].

In addition, it has been reported that HNE seems to be an important
cell growth regulating factor, acting as a signalling molecule interacting
with the growth regulating effects of various cytokines [120–123].
HNE, as a second messenger of ROS, activates activator protein 1 (AP-1)
that promotes TGFβ synthesis and fibrogenesis. Hence, HNE could, at
the same time, support fibrogenesis and inhibit the cancer growth.

The regulation of the immune system is very important in de-
termining cancer progression [10]. Therefore, lipoxidation products
may have an effect in cancer development by affecting immune com-
ponents and modulating the immune response.

3.3. Overview of tumour immunology at tumour microenvironment and its
relation with reactive aldehydes and lipoxidation

There are few studies on the role of lipoxidation adducts with re-
spect to tumour immunology, but considering what is known about
lipid peroxidation products, their influence in immunology, as de-
scribed above, and the influence of immune microenvironment in tu-
mour progression [10,124–126], altogether it suggests that lipoxidation
is a very important process in this field. Moreover, recent studies have
revealed that immune cells possess distinct metabolic characteristics
that influence their immunological functions [127]. For example,

Fig. 3. Effects of NFκB inhibition mediated by lipoxidation
adducts. High concentration of aldehydes, such as HNE or
acrolein, or high concentration of cyclopentenone pros-
taglandins (cyPG) inhibits IKK activity through the for-
mation of lipoxidation products. IKK inhibition results in
the suppression of NFκB activity, hindering the effects
triggered by NFkB, such as tumour cells proliferation,
suppression of apoptosis, angiogenesis and epithelial-me-
senchymal transition, which facilitates distant metastasis.
Moreover, cyPG can directly modify NFκB subunits
leading to NFκB inhibition, and therefore, the suppression
of NFkB effects.
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macrophage polarization is related to distinct metabolic characteristics
pertaining to lipid metabolism, among others [128]. In this sense, it has
been found that genes involved in glycolysis and phospholipid meta-
bolism, differentially expressed between M1 and M2 macrophages, are
major distinguishing features of inflammatory (M1) macrophages
[128].

Clinically manifest neoplasms can develop when tumour cells are
able to escape immunosurveillance [129,130]. In addition, the efficacy
of most chemotherapeutic and radiotherapeutic agents commonly em-
ployed in the clinic, critically depends on the activation or reactivation
of tumour-targeting immune responses [131–133].

Tumour-infiltrating leukocyte subsets can play strikingly antag-
onistic functions. One of the key features of inflammation is the func-
tional phenotype of macrophages that depend on the activating stimuli
in their microenvironment. Macrophages are prototypical O2

.-, H2O2,
and NO producing cells, and oxidants represent one of the most potent
weapons of activated macrophages in the fight against cancer cells
[134,135]. In addition, it is known that the increase of oxidant is as-
sociated with higher formation of lipid peroxidation products and,
therefore, this could lead to a higher presence of lipoxidation adducts
[136]. Moreover, it has been reported that macrophages, when stimu-
lated, can produce HNE through COX-2 [124]. The inhibition of COX-2
in murine macrophages was associated with a decrease in HNE pro-
duction following E. faecalis infection (P < 0.001). In the same study,
using IL-10-knockout mice colonized by E. faecalis, it was observed
increased levels of COX-2 expression in colonic macrophages in asso-
ciation with HNE-protein lipoxidation adducts [124].

Natural killer (NK) cells and CD8+ cytotoxic T lymphocytes (CTLs)
provide highly complementary anti-tumour strategies. Oxidants have a
dual role in the regulation of CTLs and NK cell function. It has been
observed that the most potent caspase inhibitor, X-linked inhibitor of
apoptosis protein (XIAP), confers resistance to antibody-dependent
cellular cytotoxicity (ADCC). Thus, XIAP is a critical modulator of
ADCC responsiveness [137]. In this sense, strategies have been pro-
posed to reduce the oxidative stress to enhance the ability of CTLs to kill
tumour cells. However, activated CTLs may partly adapt to the oxida-
tive stress in the tumour microenvironment by upregulating antioxidant
proteins as demonstrated with IL-2-activated NK cells [138] and as was
described above.

On the other hand, Th17 cells have been associated with poor
prognosis in some type of cancers and its pro-tumour functions have
been tightly linked to angiogenesis and promotion of tumour vascu-
larization. Nevertheless, the role of Th17 cells is much more con-
troversial due to its association with better overall survival in ovarian
cancer and in esophageal squamous cell carcinoma [10]. In this sense,
lipid peroxidation products may also have an influence since it has been
reported that aldehydes, such as MDA, transcriptionally upregulate the
expression of IL-17E in lymphocytes and alter lymphocyte differentia-
tion towards the pathogenic Th17 subset [68]. Finally, Foxp3+ reg-
ulatory T (Treg) cells accumulation in the tumour microenvironment is
considered a bad prognosis factor [10]. This population can also be
influenced by lipoxidation effects, as it was observed in atherosclerotic
lesions of a mice model, in which there was an inhibition in the gen-
eration of Treg cells induced by MDA-laminin adduct [126].

In sum, the modulation of immune components in the tumour mi-
croenvironment has a very relevant effect over the development of
tumours as well as over the type of patient's response to a specific
treatment, and lipoxidation products may have a very important role in
this modulation. In this regard, the combination of conventional ther-
apeutics with ROS modulators may increase specific tumour cytotoxi-
city.

3.4. Molecular targets and signalling properties of lipoxidation

Lipoxidation adducts may alter progressively the structure and
function of circulating and tissular proteins, with consequences on the

inflammatory status, cell proliferation and viability, thus influencing
cancer development [5]. Studies of proteins modified by reactive al-
dehydes indicated hundreds of molecular targets [8,139,140], there-
fore, we will highlight in this section targeted protein involved in cell
proliferation, apoptosis, and some protein kinases.

3.4.1. Modification of tyrosine kinase receptors
It has been previously reported that HNE present in oxLDLs or

exogenously added induces both modification and dysfunction of tyr-
osine kinase receptors (TKRs), such as epidermal growth factor receptor
(EGFR) and platelet-derived growth factor receptor (PDGFR), involving
lipoxidation adducts, which triggers TKR autophosphorylation and the
activation of the downstream signalling pathways, extracellular signal-
regulated kinase (ERK)1/2 phosphorylation and cell cycle progression
[141,142]. However, high concentrations of HNE inhibit cell pro-
liferation mediated by EGFR and PDGFR involving the formation of
HNE and ACR adducts with PDGFRβ [64,143]. Thus, it has been sug-
gested that HNE and others electrophilic lipids may potentially disturb
PDGFR-mediated responses such as proliferation and cell migration
[144].

3.4.2. Apoptosis signalling and other protein kinases
In human myeloid HL-60 cells, HNE adducts were shown to be

correlated with the induction of apoptosis, the activation of c-Jun N-
terminal kinase (JNK) and caspase 3, and they have been associated
with the activation of caspases 3, 8, and 9 in embryonic fibroblasts
isolated from mice [145,146]. Moreover, HNE induce the expression of
antioxidant genes such as heme-oxygenase and thioredoxine-1 via the
activation of the mitogen-activated protein kinase (MAPK) pathway and
the transcription factor Nrf2 [147,148]. Thioredoxin and thioredoxin
reductase are involved in the maintenance of various proteins in a re-
duced state required for their normal function, and they are also targets
of lipoxidation by 15d-PGJ2, what results in their inactivation [149].
Modified thioredoxin reductase may mediate the conformational dis-
ruption of p53 and PG-induced apoptosis via activation of caspase 3
[150]. Moreover, in Jurkat cells, it was reported that both Fas and Daxx
proteins are targets of lipoxidation by HNE. Fas adducts promote
proapoptotic signalling via ASK1, JNK, and caspase 3. While Daxx li-
poxidation promotes its export from the nucleus to the cytosol, where it
interacts with Fas to self-limit the extent of apoptosis by inhibiting the
downstream proapoptotic signalling [151]. In addition, the proa-
poptotic protein BAX is a direct target of lipoxidation by PGA2, trig-
gering a conformational change that leads to BAX activation and in-
duction of apoptosis [152]. Different studies reported the direct
modification and inactivation of the phosphoinositide-3-phosphatase
and tumour suppressor PTEN by several reactive aldehydes and ke-
tones, such as ACR, HNE and α,β-enones such as PGA2, Δ12-PGJ2 and
15d-PGJ2, with ensuing activation of PKB/Akt kinase, phosphorylation
of Akt substrates, increased cell proliferation, and increased nuclear β-
catenin signalling [153–155]. This combined and sustained inactivation
of tumour suppressors could contribute significantly to inflammation-
associated tumorigenesis [153]. Additionally, it has been observed that
cyPG and cyclopentenone isoprostanes target the oncogenic H-Ras
proteins. Whereas 15d-PGJ2 and Δ12-PGJ2 preferentially target the C-
terminal region, PGA1 and 8-iso-PGA1 bind mainly to cysteine 118,
located in the GTP-binding motif what has been correlated with H-Ras
activation [156]. In human hepatic stellate cells, the p46 and p54 iso-
forms of JNKs were identified as HNE targets and were activated by this
aldehyde. This leads to JNK nuclear translocation as well as to c-jun and
AP-1 induction [157]. Furthermore, it has been shown that 15d-PGJ2
can covalently modify c-Jun at cysteine 269, which is located in the c-
Jun DNA binding domain, and directly inhibit the DNA binding activity
of AP-1, both in vitro and in intact cells [59,158].

C. Martín-Sierra, et al. Redox Biology 23 (2019) 101103

6



4. Concluding remarks and future perspectives

Many of the previously described studies provide emerging mole-
cular evidence of the importance of lipoxidation in carcinogenesis,
where inflammation represents one of the fundamental links. There is a
great complexity in the possible roles of lipoxidation products in cancer
pathology. It has been reported contradictory results in which lipox-
idation products seem to be toxic for tumour cells [159] but also, other
studies report an association with the increase of the level of malig-
nancy in tumours [31]. Therefore, lipoxidation products can have a
crucial role not only in carcinogenesis but also in the host defence
against cancer, through their effects in tumour cells and through their
interactions with immune components.

Future studies will be necessary to distinguish physiologic and pa-
thologic roles of lipoxidation processes occurring during carcinogen-
esis, with particular attention to the pro-oxidant anticancer agents and
the drug-resistant mechanisms, which could be modulated to obtain a
better response to cancer therapy [34].
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