261 research outputs found

    Passivity Breakdown of Titanium in LiBr solutions

    Get PDF
    The passive behavior of titanium and its susceptibility to undergo localized attack in different LiBr solutions at 25 degrees C have been investigated using different electrochemical techniques: potentiodynamic polarization curves, potentiostatic passivation tests, EIS measurements and Mott-Schottky analysis. In low and moderately concentrated LiBr solutions, the breakdown potential E-b decreased with increasing bromide concentrations, while in highly concentrated LiBr solutions, E-b increased with increasing LiBr concentration. In the most concentrated LiBr solution (11.42M) Ti did not undergo passivity breakdown even at 9 V-Ag/AgCl. This observation can be explained by a a decrease in the activity of water in highly concentrated LiBr solutions. (C) 2013 The Electrochemical Society.We wish express our gratitude to the Ministerio de Ciencia e Innovacion (Project CTQ2009-07518), and to Dr. M. Asuncion Jaime. for her translation assistance.Fernández Domene, RM.; Blasco-Tamarit, E.; García-García, D.; García Antón, J. (2014). Passivity Breakdown of Titanium in LiBr solutions. Journal of The Electrochemical Society. 161(1):25-35. https://doi.org/10.1149/2.035401jesS25351611Been J. Grauman J. S. , in: Uhlig's Corrosion Handbook, 2nd ed., Winston Revie R. (ed.), 863-885, Wiley Interscience, New York (2000).Blasco-Tamarit, E., Igual-Muñoz, A., García Antón, J., & García-García, D. (2007). Corrosion behaviour and galvanic coupling of titanium and welded titanium in LiBr solutions. Corrosion Science, 49(3), 1000-1026. doi:10.1016/j.corsci.2006.07.007Huang, Y. Z., & Blackwood, D. J. (2005). Characterisation of titanium oxide film grown in 0.9% NaCl at different sweep rates. Electrochimica Acta, 51(6), 1099-1107. doi:10.1016/j.electacta.2005.05.051Pan, J., Thierry, D., & Leygraf, C. (1996). Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application. Electrochimica Acta, 41(7-8), 1143-1153. doi:10.1016/0013-4686(95)00465-3Assis, S. L. de, Wolynec, S., & Costa, I. (2006). Corrosion characterization of titanium alloys by electrochemical techniques. Electrochimica Acta, 51(8-9), 1815-1819. doi:10.1016/j.electacta.2005.02.121Birch, J. R., & Burleigh, T. D. (2000). Oxides Formed on Titanium by Polishing, Etching, Anodizing, or Thermal Oxidizing. CORROSION, 56(12), 1233-1241. doi:10.5006/1.3280511Peláez-Abellán, E., Rocha-Sousa, L., Müller, W.-D., & Guastaldi, A. C. (2007). Electrochemical stability of anodic titanium oxide films grown at potentials higher than 3V in a simulated physiological solution. Corrosion Science, 49(3), 1645-1655. doi:10.1016/j.corsci.2006.08.010Azumi, K., & Seo, M. (2001). Changes in electrochemical properties of the anodic oxide film formed on titanium during potential sweep. Corrosion Science, 43(3), 533-546. doi:10.1016/s0010-938x(00)00105-0Alves, V. A., Reis, R. Q., Santos, I. C. B., Souza, D. G., de F. Gonçalves, T., Pereira-da-Silva, M. A., … da Silva, L. A. (2009). In situ impedance spectroscopy study of the electrochemical corrosion of Ti and Ti–6Al–4V in simulated body fluid at 25°C and 37°C. Corrosion Science, 51(10), 2473-2482. doi:10.1016/j.corsci.2009.06.035Schmidt, A. M., Azambuja, D. S., & Martini, E. M. A. (2006). Semiconductive properties of titanium anodic oxide films in McIlvaine buffer solution. Corrosion Science, 48(10), 2901-2912. doi:10.1016/j.corsci.2005.10.013Sellers, M. C. K., & Seebauer, E. G. (2011). Measurement method for carrier concentration in TiO2 via the Mott–Schottky approach. Thin Solid Films, 519(7), 2103-2110. doi:10.1016/j.tsf.2010.10.071Jiang, Z., Dai, X., & Middleton, H. (2011). Investigation on passivity of titanium under steady-state conditions in acidic solutions. Materials Chemistry and Physics, 126(3), 859-865. doi:10.1016/j.matchemphys.2010.12.028Kong, D.-S., Lu, W.-H., Feng, Y.-Y., Yu, Z.-Y., Wu, J.-X., Fan, W.-J., & Liu, H.-Y. (2009). Studying on the Point-Defect-Conductive Property of the Semiconducting Anodic Oxide Films on Titanium. Journal of The Electrochemical Society, 156(1), C39. doi:10.1149/1.3021008Roh, B., & Macdonald, D. D. (2007). Effect of oxygen vacancies in anodic titanium oxide films on the kinetics of the oxygen electrode reaction. Russian Journal of Electrochemistry, 43(2), 125-135. doi:10.1134/s1023193507020012Sazou, D., Saltidou, K., & Pagitsas, M. (2012). Understanding the effect of bromides on the stability of titanium oxide films based on a point defect model. Electrochimica Acta, 76, 48-61. doi:10.1016/j.electacta.2012.04.158Roberge P. R. , Handbook of Corrosion Engineering, p. 756, McGraw-Hill, New York (2000).Basame, S. B., & White, H. S. (1995). Scanning electrochemical microscopy of native titanium oxide films. Mapping the potential dependence of spatially-localized electrochemical reactions. The Journal of Physical Chemistry, 99(44), 16430-16435. doi:10.1021/j100044a034Basame, S. B., & White, H. S. (2000). Pitting Corrosion of Titanium The Relationship Between Pitting Potential and Competitive Anion Adsorption at the Oxide Film/Electrolyte Interface. Journal of The Electrochemical Society, 147(4), 1376. doi:10.1149/1.1393364Dugdale, I., & Cotton, J. B. (1964). The anodic polarization of titanium in halide solutions. Corrosion Science, 4(1-4), 397-411. doi:10.1016/0010-938x(64)90041-1Virtanen, S., & Curty, C. (2004). Metastable and Stable Pitting Corrosion of Titanium in Halide Solutions. CORROSION, 60(7), 643-649. doi:10.5006/1.3287839Trompette, J. L., Massot, L., Arurault, L., & Fontorbes, S. (2011). Influence of the anion specificity on the anodic polarization of titanium. Corrosion Science, 53(4), 1262-1268. doi:10.1016/j.corsci.2010.12.021Casillas, N. (1994). Pitting Corrosion of Titanium. Journal of The Electrochemical Society, 141(3), 636. doi:10.1149/1.2054783Beck, T. R. (1973). Pitting of Titanium. Journal of The Electrochemical Society, 120(10), 1310. doi:10.1149/1.2403253Huo, S., & Meng, X. (1990). The states of bromide on titanium surface prior to pit initiation. Corrosion Science, 31, 281-286. doi:10.1016/0010-938x(90)90120-tFernández-Domene, R. M., Blasco-Tamarit, E., García-García, D. M., & García-Antón, J. (2011). Cavitation corrosion and repassivation kinetics of titanium in a heavy brine LiBr solution evaluated by using electrochemical techniques and Confocal Laser Scanning Microscopy. Electrochimica Acta, 58, 264-275. doi:10.1016/j.electacta.2011.09.034Srikhirin, P., Aphornratana, S., & Chungpaibulpatana, S. (2001). A review of absorption refrigeration technologies. Renewable and Sustainable Energy Reviews, 5(4), 343-372. doi:10.1016/s1364-0321(01)00003-xLee R. J. DiGuilio R. M. Jeter S. M. Teja A. S. , ASHRAE Tran., 96(1), (1990).Guiñon, J. L., Garcia-Anton, J., Pérez-Herranz, V., & Lacoste, G. (1994). Corrosion of Carbon Steels, Stainless Steels, and Titanium in Aqueous Lithium Bromide Solution. CORROSION, 50(3), 240-246. doi:10.5006/1.3293516Florides, G. A., Kalogirou, S. A., Tassou, S. A., & Wrobel, L. C. (2003). Design and construction of a LiBr–water absorption machine. Energy Conversion and Management, 44(15), 2483-2508. doi:10.1016/s0196-8904(03)00006-2Misra, R. D., Sahoo, P. K., & Gupta, A. (2005). Thermoeconomic evaluation and optimization of a double-effect H2O/LiBr vapour-absorption refrigeration system. International Journal of Refrigeration, 28(3), 331-343. doi:10.1016/j.ijrefrig.2004.09.006Hamer, W. J., & Wu, Y. (1972). Osmotic Coefficients and Mean Activity Coefficients of Uni‐univalent Electrolytes in Water at 25°C. Journal of Physical and Chemical Reference Data, 1(4), 1047-1100. doi:10.1063/1.3253108Prausnitz J. M. Lichtenthaler R. N. Azevedo E. G. , Molecular Thermodynamics of Fluid-Phase Equilibria, p. 517, Prentice Hall, Upper Saddle River, NJ (1999).Blandamer, M. J., Engberts, J. B. F. N., Gleeson, P. T., & Reis, J. C. R. (2005). Activity of water in aqueous systems; A frequently neglected property. Chemical Society Reviews, 34(5), 440. doi:10.1039/b400473fSelcuk, H., Sene, J. J., Zanoni, M. V. B., Sarikaya, H. Z., & Anderson, M. A. (2004). Behavior of bromide in the photoelectrocatalytic process and bromine generation using nanoporous titanium dioxide thin-film electrodes. Chemosphere, 54(7), 969-974. doi:10.1016/j.chemosphere.2003.09.016Muñoz, A. I., Antón, J. G., Guiñón, J. L., & Herranz, V. P. (2003). Corrosion Behavior and Galvanic Coupling of Stainless Steels, Titanium, and Alloy 33 in Lithium Bromide Solutions. CORROSION, 59(7), 606-615. doi:10.5006/1.3277591Muñoz-Portero, M. J., García-Antón, J., Guiñón, J. L., & Leiva-García, R. (2011). Pourbaix diagrams for titanium in concentrated aqueous lithium bromide solutions at 25°C. Corrosion Science, 53(4), 1440-1450. doi:10.1016/j.corsci.2011.01.013Davydov, A. . (2001). Breakdown of valve metal passivity induced by aggressive anions. Electrochimica Acta, 46(24-25), 3777-3781. doi:10.1016/s0013-4686(01)00664-8Lin, L. F. (1981). A Point Defect Model for Anodic Passive Films. Journal of The Electrochemical Society, 128(6), 1194. doi:10.1149/1.2127592Haruna, T. (1997). Theoretical Prediction of the Scan Rate Dependencies of the Pitting Potential and the Probability Distribution in the Induction Time. Journal of The Electrochemical Society, 144(5), 1574. doi:10.1149/1.1837643Macdonald, D. D. (1992). The Point Defect Model for the Passive State. Journal of The Electrochemical Society, 139(12), 3434. doi:10.1149/1.2069096Macdonald, D. D. (1999). Passivity–the key to our metals-based civilization. Pure and Applied Chemistry, 71(6), 951-978. doi:10.1351/pac199971060951Macdonald, D. D. (2011). The history of the Point Defect Model for the passive state: A brief review of film growth aspects. Electrochimica Acta, 56(4), 1761-1772. doi:10.1016/j.electacta.2010.11.005Macdonald, D. D., & Sun, A. (2006). An electrochemical impedance spectroscopic study of the passive state on Alloy-22. Electrochimica Acta, 51(8-9), 1767-1779. doi:10.1016/j.electacta.2005.02.103Park, K., Ahn, S., & Kwon, H. (2011). Effects of solution temperature on the kinetic nature of passive film on Ni. Electrochimica Acta, 56(3), 1662-1669. doi:10.1016/j.electacta.2010.09.077Macdonald, D. D. (2008). On the tenuous nature of passivity and its role in the isolation of HLNW. Journal of Nuclear Materials, 379(1-3), 24-32. doi:10.1016/j.jnucmat.2008.06.004Paola, A. D. (1989). Semiconducting properties of passive films on stainless steels. Electrochimica Acta, 34(2), 203-210. doi:10.1016/0013-4686(89)87086-0Gomes, W. P., & Vanmaekelbergh, D. (1996). Impedance spectroscopy at semiconductor electrodes: Review and recent developments. Electrochimica Acta, 41(7-8), 967-973. doi:10.1016/0013-4686(95)00427-0Da Cunha Belo, M., Hakiki, N. ., & Ferreira, M. G. . (1999). Semiconducting properties of passive films formed on nickel–base alloys type Alloy 600: influence of the alloying elements. Electrochimica Acta, 44(14), 2473-2481. doi:10.1016/s0013-4686(98)00372-7Hakiki, N. B., Boudin, S., Rondot, B., & Da Cunha Belo, M. (1995). The electronic structure of passive films formed on stainless steels. Corrosion Science, 37(11), 1809-1822. doi:10.1016/0010-938x(95)00084-wHamadou, L., Kadri, A., & Benbrahim, N. (2005). Characterisation of passive films formed on low carbon steel in borate buffer solution (pH 9.2) by electrochemical impedance spectroscopy. Applied Surface Science, 252(5), 1510-1519. doi:10.1016/j.apsusc.2005.02.135Wijesinghe, T. L. S. L., & Blackwood, D. J. (2008). Photocurrent and capacitance investigations into the nature of the passive films on austenitic stainless steels. Corrosion Science, 50(1), 23-34. doi:10.1016/j.corsci.2007.06.009Amri, J., Souier, T., Malki, B., & Baroux, B. (2008). Effect of the final annealing of cold rolled stainless steels sheets on the electronic properties and pit nucleation resistance of passive films. Corrosion Science, 50(2), 431-435. doi:10.1016/j.corsci.2007.08.013Li, D. G., Wang, J. D., & Chen, D. R. (2012). Influence of potentiostatic aging, temperature and pH on the diffusivity of a point defect in the passive film on Nb in an HCl solution. Electrochimica Acta, 60, 134-146. doi:10.1016/j.electacta.2011.11.024Fernández-Domene, R. M., Blasco-Tamarit, E., García-García, D. M., & García-Antón, J. (2013). Passive and transpassive behaviour of Alloy 31 in a heavy brine LiBr solution. Electrochimica Acta, 95, 1-11. doi:10.1016/j.electacta.2013.02.024Urquidi-Macdonald, M. (1989). Theoretical Analysis of the Effects of Alloying Elements on Distribution Functions of Passivity Breakdown. Journal of The Electrochemical Society, 136(4), 961. doi:10.1149/1.2096894Schmidt, A. M., & Azambuja, D. S. (2006). Electrochemical behavior of Ti and Ti6Al4V in aqueous solutions of citric acid containing halides. Materials Research, 9(4), 387-392. doi:10.1590/s1516-14392006000400008Brug, G. J., van den Eeden, A. L. G., Sluyters-Rehbach, M., & Sluyters, J. H. (1984). The analysis of electrode impedances complicated by the presence of a constant phase element. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 176(1-2), 275-295. doi:10.1016/s0022-0728(84)80324-1Valero Vidal, C., & Igual Muñoz, A. (2010). Study of the adsorption process of bovine serum albumin on passivated surfaces of CoCrMo biomedical alloy. Electrochimica Acta, 55(28), 8445-8452. doi:10.1016/j.electacta.2010.07.028Smart, N. G., & Bockris, J. O. (1992). Effect of Water Activity on Corrosion. CORROSION, 48(4), 277-280. doi:10.5006/1.3315933Frankel, G. S. (1998). Pitting Corrosion of Metals. Journal of The Electrochemical Society, 145(6), 2186. doi:10.1149/1.1838615Blasco-Tamarit, E., Igual-Muñoz, A., & García-Antón, J. (2007). Galvanic corrosion of high alloyed austenitic stainless steel welds in LiBr systems. Corrosion Science, 49(12), 4452-4471. doi:10.1016/j.corsci.2007.05.020Crozier, P. S., & Rowley, R. L. (2002). Activity coefficient prediction by osmotic molecular dynamics. Fluid Phase Equilibria, 193(1-2), 53-73. doi:10.1016/s0378-3812(01)00734-8Burstein, G. T. (1989). The Dissolution and Repassivation of New Titanium Surfaces in Alkaline Methanolic Solution. Journal of The Electrochemical Society, 136(5), 1313. doi:10.1149/1.2096913Banaś, J., Stypuła, B., Banaś, K., Światowska-Mrowiecka, J., Starowicz, M., & Lelek-Borkowska, U. (2008). Corrosion and passivity of metals in methanol solutions of electrolytes. Journal of Solid State Electrochemistry, 13(11), 1669-1679. doi:10.1007/s10008-008-0649-5Beck K. O. , Titanium anodizing process, US Patent 2,949, 411 (1960).Delplancke, J.-L., Degrez, M., Fontana, A., & Winand, R. (1982). Self-colour anodizing of titanium. Surface Technology, 16(2), 153-162. doi:10.1016/0376-4583(82)90033-4Gaul, E. (1993). Coloring titanium and related metals by electrochemical oxidation. Journal of Chemical Education, 70(3), 176. doi:10.1021/ed070p176Sul, Y.-T., Johansson, C. B., Jeong, Y., & Albrektsson, T. (2001). The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Medical Engineering & Physics, 23(5), 329-346. doi:10.1016/s1350-4533(01)00050-9Yan, Z.  M., Guo, T.  W., Pan, H.  B., & Yu, J.  J. (2002). Influences of Electrolyzing Voltage on Chromatics of Anodized Titanium Dentures. MATERIALS TRANSACTIONS, 43(12), 3142-3145. doi:10.2320/matertrans.43.3142Chen, C., Chen, J., Chao, C., & Say, W. C. (2005). Electrochemical characteristics of surface of titanium formed by electrolytic polishing and anodizing. Journal of Materials Science, 40(15), 4053-4059. doi:10.1007/s10853-005-2802-1Diamanti, M. V., Del Curto, B., & Pedeferri, M. (2008). Interference colors of thin oxide layers on titanium. Color Research & Application, 33(3), 221-228. doi:10.1002/col.20403Karambakhsh, A., Afshar, A., Ghahramani, S., & Malekinejad, P. (2011). Pure Commercial Titanium Color Anodizing and Corrosion Resistance. Journal of Materials Engineering and Performance, 20(9), 1690-1696. doi:10.1007/s11665-011-9860-

    Crescimento em diâmetro de três espécies da floresta tropical seca no nordeste do Brasil.

    Get PDF
    Editores técnicos: Marcílio José Thomazini, Elenice Fritzsons, Patrícia Raquel Silva, Guilherme Schnell e Schuhli, Denise Jeton Cardoso, Luziane Franciscon. EVINCI. Resumos

    An assessment of per capita water consumption in Sirte, Libya

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer via the DOI in this record .Worldwide, where freshwater resources are limited, a major water scarcity problem occurs. Population growth, which leads to increased water consumption with high inefficiencies of household water use behaviour especially in developing countries, makes the problem worse. In this situation, a sustainable urban water management approach which considers household water consumption patterns is required. However, country specific water consumption data particularly for the developing countries is limited. This paper investigates per capita water consumption in Sirte city by evaluating the indoor and outdoor domestic water uses using a survey. The survey contains information about demographic, socio-economic and household water end use behavioural characteristics. The preliminary results suggest that water consumption varies with the type of dwelling and females tends to consume considerable more water in comparison to males. Household income does not seem to affect water consumption.Ministry of Higher Education and Scientific Research in Liby

    Differential Stability of Aurein 1.2 Pores in Model Membranes of Two Probiotic Strains

    Get PDF
    Aurein 1.2 is an antimicrobial peptide from the skin secretion of an Australian frog. In the previous experimental work, we reported a differential action of aurein 1.2 on two probiotic strains Lactobacillus delbrueckii subsp. bulgaricus (CIDCA 331) and Lactobacillus delbrueckii subsp. lactis (CIDCA 133). The differences found were attributed to the bilayer compositions. Cell cultures and CIDCA 331-derived liposomes showed higher susceptibility than the ones derived from the CIDCA 133 strain, leading to content leakage and structural disruption. Here, we used molecular dynamics simulations to explore these systems at the atomistic level. We hypothesize that if the antimicrobial peptides organized themselves to form a pore, it will be more stable in membranes that emulate the CIDCA 331 strain than in those of the CIDCA 133 strain. To test this hypothesis, we simulated preassembled aurein 1.2 pores embedded into bilayer models that emulate the two probiotic strains. It was found that the general behavior of the systems depends on the composition of the membrane rather than the preassemble system characteristics. Overall, it was observed that aurein 1.2 pores are more stable in the CIDCA 331 model membranes. This fact coincides with the high susceptibility of this strain against antimicrobial peptide. In contrast, in the case of the CIDCA 133 model membranes, peptides migrate to the water-lipid interphase, the pore shrinks, and the transport of water through the pore is reduced. The tendency of glycolipids to make hydrogen bonds with peptides destabilizes the pore structures. This feature is observed to a lesser extent in CIDCA 331 due to the presence of anionic lipids. Glycolipid transverse diffusion (flip-flop) between monolayers occurs in the pore surface region in all the cases considered. These findings expand our understanding of the antimicrobial peptide resistance properties of probiotic strains.Fil: Balatti, Galo Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Domene, Carmen. University of Bath; Reino UnidoFil: Martini, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Metabolismo del Fármaco. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Metabolismo del Fármaco; ArgentinaFil: Pickholz, Mónica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentin

    Effect of Temperature on Thermogalvanic Coupling of Alloy 31 in Libr Solutions Studied by Means of Imposed Potential Measurements

    Get PDF
    Corrosion resistance of Alloy 31, a highly alloyed stainless steel (UNS N08031) were studied in heavy brine LiBr solutions (400, 700 and 992 g/l) at different temperatures using electrochemical techniques. The mixed potential theory was used to evaluate thermogalvanic corrosion of Alloy 31 in the studied LiBr solutions. Potentiodynamic curves indicate that high temperatures favoured both cathodic and anodic processes, increasing passive current densities and decreasing the pitting potential. Generally, the cold electrode of the pair was the anode of the thermogalvanic cell

    Repassivation of the damage generated by cavitation on UNS N08031 in a LiBr solution by means of electrochemical techniques and Confocal Laser Scanning Microscopy

    Get PDF
    The objective of this work is to study the influence of cavitation on the corrosion behaviour of Alloy 31, a highly-alloyed austenitic stainless steel (UNS N08031), in a LiBr heavy brine solution (992 g/L) at 25 °C. The presence of cavitation shifted the OCP value towards the active direction by 708 mVAg/AgCl, increased anodic current densities and passivation current density, ip, and reduced the pitting potential, Ep. Repassivation behaviour of Alloy 31 has been investigated by using potentiostatic tests at different potentials. The current density transient obtained after interrupting cavitation was used to obtain the repassivation index, n, provided by the slope of the log i(t) vs. log t representation. The value of n decreased as the applied potential was increased, reaching values near zero for potentials close to the pitting potential. The damage generated during the potentiostatic tests has been quantified by means of Confocal Laser Scanning Microscopy

    Thermogalvanic corrosion of Alloy 31 in different heavy brine LiBr solutions

    Get PDF
    Thermogalvanic corrosion generated between two electrodes of Alloy 31, a highly-alloyed austenitic stainless steel (UNS N08031), has been investigated imposing different temperature gradients in three deaerated LiBr solutions, under open circuit conditions by using a zero-resistance ammeter (ZRA). Besides EIS spectra were acquired in order to explain the obtained results. On the whole, cold Alloy 31 electrodes were anodic to hot Alloy 31 electrodes, since an increase in temperature favoured the cathodic behaviour of the hot electrode. Thermogalvanic corrosion of Alloy 31 in the LiBr solutions studied was not severe, although it negatively affects the corrosion resistance of the cold anode. The protective properties of the passive film formed on the anode surface were found to improve with thermogalvanic coupling time

    Accompanied child irregular migrants who arrive to Spain in small boats: experiences and health needs

    Get PDF
    The European Union is the preferred destination of child irregular migrants arrived from northern Africa, who risk their lives crossing the Mediterranean Sea in small boats. Accompanied Child Irregular Migrants (AChIMs) are exposed to physical and psychological risk. The objective of our study is to describe and understand the experiences and health needs of AChIMs who arrive to Spain in small boats, through the testimony of adults who accompany them on the journey. A qualitative study, based on Gadamer's hermeneutic phenomenology, was performed. After obtaining approval from the Ethics and Research Committee, we conducted in-depth interviews on 32 adults who travelled with AChIMs. Two main themes emerged: (1) The journey a child should never have to take, with the subthemes 'AChIMs as a paradigm of vulnerability' and 'Crossing the sea, playing with death' and (2) Characterising emergency care to AChIMs, with the subthemes 'Prioritising specific care', 'Identifying high-risk situations' and 'The detaining of innocent children'. AChIMs, along with adults, risk their lives in such a dangerous and perilous journey, therefore, finding out about their experiences may contribute to improving the treatment of their specific health needs during the phases of rescue and emergency care
    corecore