32 research outputs found

    A molecular barcode to inform the geographical origin and transmission dynamics of Plasmodium vivax malaria.

    Get PDF
    Although Plasmodium vivax parasites are the predominant cause of malaria outside of sub-Saharan Africa, they not always prioritised by elimination programmes. P. vivax is resilient and poses challenges through its ability to re-emerge from dormancy in the human liver. With observed growing drug-resistance and the increasing reports of life-threatening infections, new tools to inform elimination efforts are needed. In order to halt transmission, we need to better understand the dynamics of transmission, the movement of parasites, and the reservoirs of infection in order to design targeted interventions. The use of molecular genetics and epidemiology for tracking and studying malaria parasite populations has been applied successfully in P. falciparum species and here we sought to develop a molecular genetic tool for P. vivax. By assembling the largest set of P. vivax whole genome sequences (n = 433) spanning 17 countries, and applying a machine learning approach, we created a 71 SNP barcode with high predictive ability to identify geographic origin (91.4%). Further, due to the inclusion of markers for within population variability, the barcode may also distinguish local transmission networks. By using P. vivax data from a low-transmission setting in Malaysia, we demonstrate the potential ability to infer outbreak events. By characterising the barcoding SNP genotypes in P. vivax DNA sourced from UK travellers (n = 132) to ten malaria endemic countries predominantly not used in the barcode construction, we correctly predicted the geographic region of infection origin. Overall, the 71 SNP barcode outperforms previously published genotyping methods and when rolled-out within new portable platforms, is likely to be an invaluable tool for informing targeted interventions towards elimination of this resilient human malaria

    G6PD deficiency alleles in a malaria-endemic region in the Western Brazilian Amazon.

    Get PDF
    BACKGROUND: Plasmodium vivax parasites are the predominant cause of malaria infections in the Brazilian Amazon. Infected individuals are treated with primaquine, which can induce haemolytic anaemia in glucose-6-phosphate dehydrogenase (G6PD)-deficient individuals and may lead to severe and fatal complications. This X-linked disorder is distributed globally and is caused by allelic variants with a geographical distribution that closely reflects populations exposed historically to endemic malaria. In Brazil, few studies have reported the frequency of G6PD deficiency (G6PDd) present in malaria-endemic areas. This is particularly important, as G6PDd screening is not currently performed before primaquine treatment. The aim of this study was to determine the prevalence of G6PDd in the region of Alto do Juruá, in the Western Brazilian Amazon, an area characterized by a high prevalence of P. vivax infection. METHODS: Five-hundred and sixteen male volunteers were screened for G6PDd using the fluorescence spot test (Beutler test) and CareStartℱ G6PD Biosensor system. Demographic and clinical-epidemiological data were acquired through an individual interview. To assess the genetic basis of G6PDd, 24 SNPs were genotyped using the Kompetitive Allele Specific PCR assay. RESULTS: Twenty-three (4.5%) individuals were G6PDd. No association was found between G6PDd and the number of malaria cases. An increased risk of reported haemolysis symptoms and blood transfusions was evident among the G6PDd individuals. Twenty-two individuals had the G6PDd A(-) variant and one the G6PD A(+) variant. The Mediterranean variant was not present. Apart from one polymorphism, almost all SNPs were monomorphic or with low frequencies (0-0.04%). No differences were detected among ethnic groups. CONCLUSIONS: The data indicates that ~1/23 males from the Alto do Juruá could be G6PD deficient and at risk of haemolytic anaemia if treated with primaquine. G6PD A(-) is the most frequent deficiency allele in this population. These results concur with reported G6PDd in other regions in Brazil. Routine G6PDd screening to personalize primaquine administration should be considered, particularly as complete treatment of patients with vivax malaria using chloroquine and primaquine, is crucial for malaria elimination

    Global genetic diversity of var2csa in Plasmodium falciparum with implications for malaria in pregnancy and vaccine development

    Get PDF
    Malaria infection during pregnancy, caused by the sequestering of Plasmodium falciparum parasites in the placenta, leads to high infant mortality and maternal morbidity. The parasite-placenta adherence mechanism is mediated by the VAR2CSA protein, a target for natural occurring immunity. Currently, vaccine development is based on its ID1-DBL2Xb domain however little is known about the global genetic diversity of the encoding var2csa gene, which could influence vaccine efficacy. In a comprehensive analysis of the var2csa gene in >2,000 P. falciparum field isolates across 23 countries, we found that var2csa is duplicated in high prevalence (>25%), African and Oceanian populations harbour a much higher diversity than other regions, and that insertions/deletions are abundant leading to an underestimation of the diversity of the locus. Further, ID1-DBL2Xb haplotypes associated with adverse birth outcomes are present globally, and African-specific haplotypes exist, which should be incorporated into vaccine design

    Distinctive genetic structure and selection patterns in Plasmodium vivax from South Asia and East Africa.

    Get PDF
    Despite the high burden of Plasmodium vivax malaria in South Asian countries, the genetic diversity of circulating parasite populations is not well described. Determinants of antimalarial drug susceptibility for P. vivax in the region have not been characterised. Our genomic analysis of global P. vivax (n = 558) establishes South Asian isolates (n = 92) as a distinct subpopulation, which shares ancestry with some East African and South East Asian parasites. Signals of positive selection are linked to drug resistance-associated loci including pvkelch10, pvmrp1, pvdhfr and pvdhps, and two loci linked to P. vivax invasion of reticulocytes, pvrbp1a and pvrbp1b. Significant identity-by-descent was found in extended chromosome regions common to P. vivax from India and Ethiopia, including the pvdbp gene associated with Duffy blood group binding. Our investigation provides new understanding of global P. vivax population structure and genomic diversity, and genetic evidence of recent directional selection in this important human pathogen

    Zika might not be acting alone: Using an ecological study approach to investigate potential co-acting risk factors for an unusual pattern of microcephaly in Brazil

    Get PDF
    <div><p>Zika virus infections can cause a range of neurologic disorders including congenital microcephaly. However, while Zika infections have been notified across all regions in Brazil, there has been an unusual number of congenital microcephaly case notifications concentrated in the Northeast of the country. To address this observation, we investigated epidemiological data (2014–2016) on arbovirus co-distribution, environmental and socio-economic factors for each region in Brazil. Data on arbovirus reported cases and microcephaly were collected from several Brazilian Ministry of Health databases for each Federal unit. These were complemented by environmental management, social economic and <i>Aedes aegypti</i> infestation index data, extracted from multiple databases. Spatial time “ecological” analysis on the number of arboviruses transmitted by <i>Aedes</i> mosquitoes in Brazil show that the distribution of dengue and Zika was widespread in the whole country, with higher incidence in the West-Central region. However, reported chikungunya cases were higher in the Northeast, the region also with the highest number of microcephaly cases registered. Social economic factors (human development index and poverty index) and environmental management (water supply/storage and solid waste management) pointed the Northeast as the less wealthy region. The Northeast is also the region with the highest risk of <i>Aedes aegypti</i> house infestation due to the man-made larval habitats. In summary, the results of our ecological analysis support the hypothesis that the unusual distribution of microcephaly might not be due to Zika infection alone and could be accentuated by poverty and previous or co-infection with other pathogens. Our study reinforces the link between poverty and the risk of disease and the need to understand the effect on pathogenesis of sequential exposure to arboviruses and co-viral infections. Comprehensive large-scale cohort studies are required to corroborate our findings. We recommend that the list of infectious diseases screened, particularly during pregnancy, be regularly updated to include and effectively differentiate all viruses from ongoing outbreaks.</p></div

    Symbolic Planning for Industrial Applications : the eRobotics Approach

    Get PDF
    Histological evidence of Plasmodium in the placenta is indicative of placental malaria, a condition associated with severe outcomes for mother and child. Histological lesions found in placentas from Plasmodium-exposed women include syncytial knotting, syncytial rupture, thickening of the placental barrier, necrosis of villous tissue and intervillositis. These histological changes have been associated with P. falciparum infections, but little is known about the contribution of P. vivax to such changes. We conducted a cross-sectional study with pregnant women at delivery and assigned them to three groups according to their Plasmodium exposure during pregnancy: no Plasmodium exposure (n = 41), P. vivax exposure (n = 59) or P. falciparum exposure (n = 19). We evaluated their placentas for signs of Plasmodium and placental lesions using ten histological parameters: syncytial knotting, syncytial rupture, placental barrier thickness, villi necrosis, intervillous space area, intervillous leucocytes, intervillous mononucleates, intervillous polymorphonucleates, parasitized erythrocytes and hemozoin. Placentas from P. vivax-exposed women showed little evidence of Plasmodium or hemozoin but still exhibited more lesions than placentas from women not exposed to Plasmodium, especially when infections occurred twice or more during pregnancy. In the Brazilian state of Acre, where diagnosis and primary treatment are readily available and placental lesions occur in the absence of detected placental parasites, relying on the presence of Plasmodium in the placenta to evaluate Plasmodium-induced placental pathology is not feasible. Multivariate logistic analysis revealed that syncytial knotting (odds ratio [OR], 4.21, P = 0.045), placental barrier thickness (OR, 25.59, P = 0.021) and mononuclear cells (OR, 4.02, P = 0.046) were increased in placentas from P. vivax-exposed women when compared to women not exposed to Plasmodium during pregnancy. A vivax-score was developed using these three parameters (and not evidence of Plasmodium) that differentiates between placentas from P. vivax-exposed and unexposed women. This score illustrates the importance of adequate management of P. vivax malaria during pregnancy

    Acquisition of antibodies to Plasmodium falciparum and Plasmodium vivax antigens in pregnant women living in a low malaria transmission area of Brazil

    No full text
    Abstract Background Pregnant women have increased susceptibility to Plasmodium falciparum malaria and acquire protective antibodies over successive pregnancies. Most studies that investigated malaria antibody responses in pregnant women are from high transmission areas in sub-Saharan Africa, while reports from Latin America are scarce and inconsistent. The present study sought to explore the development of antibodies against P. falciparum and Plasmodium vivax antigens in pregnant women living in a low transmission area in the Brazilian Amazon. Methods In a prospective cohort study, plasma samples from 408 pregnant women (of whom 111 were infected with P. falciparum, 96 had infections with P. falciparum and P. vivax, and 201 had no Plasmodium infection) were used to measure antibody levels. Levels of IgG and opsonizing antibody to pregnancy-specific variant surface antigens (VSAs) on infected erythrocytes (IEs), 10 recombinant VAR2CSA Duffy binding like (DBL domains), 10 non-pregnancy-specific P. falciparum merozoite antigens, and 10 P. vivax antigens were measured by flow cytometry, ELISA, and multiplex assays. Antibody levels and seropositivity among the groups were compared. Results Antibodies to VSAs on P. falciparum IEs were generally low but were higher in currently infected women and women with multiple P. falciparum episodes over pregnancy. Many women (21%-69%) had antibodies against each individual VAR2CSA DBL domain, and antibodies to DBLs correlated with each other (r ≄ 0.55, p < 0.0001), but not with antibody to VSA or history of infection. Infection with either malaria species was associated with higher seropositivity rate for antibodies against P. vivax proteins, adjusted odds ratios (95% CI) ranged from 5.6 (3.2, 9.7), p < 0.0001 for PVDBPII-Sal1 to 15.7 (8.3, 29.7), p < 0.0001 for PvTRAg_2. Conclusions Pregnant Brazilian women had low levels of antibodies to pregnancy-specific VSAs that increased with exposure. They frequently recognized both VAR2CSA DBL domains and P. vivax antigens, but only the latter varied with infection. Apparent antibody prevalence is highly dependent on the assay platform used

    The placental parameters evaluated by <i>Plasmodium</i> species during infection.

    No full text
    <p>For all placentas, areas of necrosis (B) and intervillous space (C) were measured by overlaying a square grid (A) and counting the number of intersecting points that touched necrotic areas (yellow dots; the white circle indicates an example) or intervillous space areas (blue dots; the black circle indicates an example). The ratios of intervillous space area per necrosis (D) and intervillous space area per placental barrier thickness (E) were calculated. The placentas in the “no plasmodium” group (n = 41; white boxes) appear to have similar necrotic areas and more intervillous space than the placentas in the “P. vivax” group (n = 59; red boxes). The placentas in the “P. falciparum” group (n = 19; grey boxes) exhibited more necrotic areas and less intervillous space. Graphs (B, C, D and E) represent the transformed data. The boxes represent the mean and standard deviation values. The whiskers represent the 5<sup>th</sup> and 95<sup>th</sup> percentiles. The photograph was taken using a Zeiss Axio Imager M2 light microscope equipped with a Zeiss Axio Cam HRc. Grid overlays and counts were performed using Image J.</p
    corecore