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Abstract

Zika virus infections can cause a range of neurologic disorders including congenital micro-

cephaly. However, while Zika infections have been notified across all regions in Brazil, there

has been an unusual number of congenital microcephaly case notifications concentrated in

the Northeast of the country. To address this observation, we investigated epidemiological

data (2014–2016) on arbovirus co-distribution, environmental and socio-economic factors

for each region in Brazil. Data on arbovirus reported cases and microcephaly were collected

from several Brazilian Ministry of Health databases for each Federal unit. These were com-

plemented by environmental management, social economic and Aedes aegypti infestation

index data, extracted from multiple databases. Spatial time “ecological” analysis on the

number of arboviruses transmitted by Aedes mosquitoes in Brazil show that the distribution

of dengue and Zika was widespread in the whole country, with higher incidence in the West-

Central region. However, reported chikungunya cases were higher in the Northeast, the

region also with the highest number of microcephaly cases registered. Social economic fac-

tors (human development index and poverty index) and environmental management (water

supply/storage and solid waste management) pointed the Northeast as the less wealthy

region. The Northeast is also the region with the highest risk of Aedes aegypti house infesta-

tion due to the man-made larval habitats. In summary, the results of our ecological analysis

support the hypothesis that the unusual distribution of microcephaly might not be due to

Zika infection alone and could be accentuated by poverty and previous or co-infection with

other pathogens. Our study reinforces the link between poverty and the risk of disease and

the need to understand the effect on pathogenesis of sequential exposure to arboviruses

and co-viral infections. Comprehensive large-scale cohort studies are required to corrobo-

rate our findings. We recommend that the list of infectious diseases screened, particularly

during pregnancy, be regularly updated to include and effectively differentiate all viruses

from ongoing outbreaks.
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Introduction

Zika, dengue and chikungunya are arboviral diseases transmitted by mosquitoes from the

genus Aedes. The co-circulation of these viruses in Brazil, sharing the same vectors and causing

similar symptoms, represents a major public health challenge. Dengue fever is the most impor-

tant re-emerging mosquito-borne viral disease worldwide. In Brazil, the incidence of dengue

has been frequently high, with 1.49 million cases reported in 2016 [1]. Chikungunya viral

infections were first reported in Bahia, Brazil in 2014, in a patient travelling from Angola [2].

Since then, more than 250,000 cases of chikungunya infection have been registered [3]. The

first Zika cases reported in Brazil were identified in the Northeast region, in early 2015, in

patients presenting symptoms of mild fever, rash, conjunctivitis and arthralgia [4]. Since the

first reported autochthonous transmission, more than 200,000 cases have been registered in

Brazil [5], mainly during 2015–2016.

The outbreak of Zika infection in Brazil has exposed the high risk this arbovirus imposes

during pregnancy to the fetus. Brazil experienced an approximately 20-fold increase in the

total number of congenital microcephaly cases from 2014 to 2015, following the confirmation

of autochthonous Zika virus transmission [6]. In December 2015, the Brazilian Ministry of

Health enhanced congenital microcephaly surveillance by implementing a more sensitive case

definition, and added Zika to the list of “TORCHS” pathogens (Toxoplasmosis, Rubella, Cyto-

megalovirus, Herpes simplex virus, Syphilis) that are screened [7,8]. In February 2016, WHO

declared the link between Zika virus and microcephaly to be a Public Health Emergency of

International concern. Subsequently, several cases of microcephaly associated with mothers

infected with Zika during pregnancy were reported in different Federal Units of Brazil, most

of them in the Northeast region [9]. Several studies have shown that the arbovirus can be trans-

mitted vertically during pregnancy and cause congenital problems of the fetus. A recent case-

control study performed in Recife, Pernambuco State, revealed that babies with microcephaly

were 55 times more likely to have been infected with Zika virus during pregnancy than non-

infected [10]. The virus has been detected in the placenta, amniotic fluid and neural tissues of

newborns with microcephaly [11–13]. In addition to microcephaly, other birth defects have

been reported such as intracranial calcifications and abnormalities of the corpus callosum and

the cerebellum, mainly when the exposure to the virus occurs during the first trimester of preg-

nancy [14].

Before the Brazilian outbreak, no microcephaly-Zika related cases have previously been

reported. Zika virus was firstly isolated from a Rhesus monkey in the Zika Forest of Uganda,

in 1947 [15]. The first large outbreak of the Zika virus in humans was registered only in 2007

on the Pacific island of Yap, in Micronesia [16]. The same lineage, an Asian type, caused epi-

demics in the Pacific Islands in 2013–2014 [17–18]. Phylogenetic analyses revealed the Brazil-

ian Zika virus to be closer to those circulating in French Polynesia in 2013, therefore, it might

be possible that the Asian-type strains caused unreported microcephaly in the past outbreaks

[4,19]. Indeed, a recent retrospective study in French Polynesia has shown that Zika virus

infection during the first trimester of pregnancy led to a 1% increase in the risk of congenital

microcephaly [20].

Recently, Colombia faced the world’s second largest Zika outbreak, leading to a four-fold

increase in the overall microcephaly cases compared to the previous year. However, the relative

increase of reported cases (per 10,000 live births) was far fewer than in Brazil, where a nine-

fold increase was reported [11]. This observation raises the possibility that additional risk fac-

tors might be driving the highest incidence of microcephaly-zika related cases reported so far.

It is unclear why a focused cluster of microcephaly cases has occurred in the Northeast region

of Brazil. Several theories on the intensification of Zika virus transmission and resulting severe
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aegypti Infestation Index Rapid Survey (LIRAa),

performed every year by the Federal Government.

All data is publicly available. URL: 1) http://

portalarquivos.saude.gov.br/images/pdf/2017/

fevereiro/05/2017_002-Dengue%20SE52_

corrigido.pdf; 2) http://portalarquivos.saude.gov.

br/images/pdf/2017/fevereiro/05/2017_002-

Dengue%20SE52_corrigido.pdf; 3) http://portalms.

saude.gov.br/boletins-epidemiologicos (under

assunto: Zika); 4) http://portalms.saude.gov.br/

boletins-epidemiologicos (under assunto:

Microcefalia e/ou alterações do Sistema Nervoso

Central (SNC) associadas à infecção por vı́rus

Zika); 5) http://combateaedes.saude.gov.br/

images/pdf/Informe-Epidemiologico-n57-SE-52_

2016-09jan2017.pdf; 6) http://www.ibge.gov.br/

home/; 7) http://portalarquivos.saude.gov.br/

images/pdf/2016/novembro/24/Tabela—LIRAa-

Nacional-2016.pdf; 8) http://portalarquivos.saude.

gov.br/images/pdf/2017/fevereiro/05/2017_002-

Dengue%20SE52_corrigido.pdf; 9) http://

portalarquivos2.saude.gov.br/images/pdf/2016/

abril/26/2016-014—Dengue-SE13-prelo.pdf.
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fetal neural defects have been raised. These have pointed to socio-economic factors such as

precarious living conditions and low regional gross domestic product (GDP) [21–25]. Further,

sequential exposure to arboviruses and even co-infections could play a role in severe clinical

manifestations [19, 26–27].

Here we aim to provide insights into the unusual pattern of microcephaly distribution in

Brazil. By analysing the number of cases reported and co-distribution of dengue, chikungunya

and Zika virus, their vectors, as well as socioeconomic and environmental data, we sought to

investigate whether co-acting risk factors might be contributing to the Zika microcephaly

cases in the Brazil Northeast region.

Material and methods

Mapping the incidence of dengue, chikungunya and Zika virus

To better understand the co-distribution of dengue, chikungunya and Zika virus in Brazil we

collated data on reported cases (per 100,000 inhabitants) for all three pathogens from 2014 to

2016. Data including the total number of cases per year and per state for each virus were

obtained from epidemiological Bulletins from the Brazilian Ministry of Health database, (until

Volume 48, representing cumulative data until week 52 of 2016) [28], confirmed by informa-

tion available at each Brazil Federal Unit’s Secretary of Health. Bulletins from the Brazilian

Ministry of Health database are technical-scientific publications edited by the Department of

Health Surveillance, are circulated with monthly and weekly frequency, and are used for

reporting the monitoring activities and investigation of specific seasonal diseases. Specifically,

they report the total number of cases notified by each State Secretary. The data obtained for

Zika in 2015 consist of suspected and/or confirmed cases, as most of them were only con-

firmed in 2016. Confirmation is based on RT-PCR and serology methodologies. PubMed and

Web of Science databases were searched for studies that reported outbreaks of dengue (family

Flaviviridae), Zika and chikungunya (family Togaviridae) from 2010, including cases of co-

infections. The search terms used were: “Outbreak”, “Zika”, “Chikungunya”,”Dengue” , “Brazil”,
and “Co-infections”. Maps of arbovirus incidence (per 100,000) per Brazilian Federal Unit were

constructed using the package tmap in R software [29].

Distribution of the notified cases of microcephaly

Microcephaly is a congenital malformation where babies are born with a skull size smaller

than expected when compared to those of the same sex and age [30]. Specifically, microcephaly

is defined as a head circumference that is two standard deviations (SDs) below the mean for

the appropriate age and sex, or gestational age if measured at birth. The geographic regions

where the microcephaly cases were registered refer to the mother’s place of residence. Data on

microcephaly from 2010–2016 were extracted from the Brazilian Ministry of Health website

(http://portalsaude.saude.gov.br/) and from the epidemiological Bulletins (until volume 47,

week 52 of 2016) available at the Brazilian Ministry of Health database [31]. Additional infor-

mation was extracted from the System of Strategic Management Support (SAGE) [32], the

“Registro de Eventos em Saúde Pública” (RESP-Microcefalia) [33]. It includes the epidemiologi-

cal information (2015–2016) regarding microcephaly and/or Central Nervous System changes,

provided under the "Protocol on Surveillance and Response to Occurrence of Microcephaly and/
or Central Nervous System” [34].

Data on the cumulative incidence of microcephaly from 2015 to 2016 are based on cases

that fulfilled the previous definition of cephalic perimeter (33 cm), in addition to the new

definitions adopted in the Surveillance Protocol 2015, that defined the 32 cm for boys and 31.5

cm for girls, born with 37 or more weeks of gestation. Notified cases in fetuses, abortions,
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stillbirths or newborns were confirmed positive for microcephaly by Zika or other undeter-

mined infectious diseases when: a) typical alterations indicative of congenital infection were

found, such as cerebral calcifications, ventricular and posterior fossa alterations among other

signs observed by an imaging method, or/and b) when confirmed by laboratory-based Zika

virus identification. Data are presented per state.

Socioeconomic data, environmental management

Demographic, socioeconomic, and environmental management data were obtained from the

national census performed by the Brazilian Institute of Geography and Statistics (IBGE) [35].

Data for 2016 have been estimated from the last national census (2010). The demographic and

socioeconomic variables used, include: (i) Human development index (scale from 0 to 1, where

lower values indicate lower development), which considers education (average years of stud-

ies), longevity (population life expectancy) and gross domestic product per capita; (ii) Poverty
index (scale from 0 to 100, where lower values indicate greater poverty), which considers health

(nutrition and child mortality), education (school attendance) and living standards (sanitation,

water, electricity, cooking fuel, assets, house conditions). Environmental management data

considers: Garbage accumulation index (number of houses with accumulated and uncollected

garbage) and rainwater storage (number of houses with storage of rainwater in containers).

Data are presented per year and per state.

Aedes aegypti surveillance

Aedes aegypti infestation levels in Brazil in 2016, was obtained from the Aedes aegypti Infesta-

tion Index Rapid Survey (LIRAa), performed every year by the Federal Government. This

house infestation index measures the percentage of searched buildings with the presence of lar-

vae of A. aegypti. The average house infestation index (HII) of each municipality is calculated

and classified in different risk levels (low-risk or satisfactory, HII < 0.9; mid-risk or alert,

1< HII < 3.9; high risk of A. aegypti infestation, HII> 4) [36].

Statistical analysis

All the data were merged within the R statistical software. We performed an ecological analysis

where pairwise relationships between microcephaly, virus infection, social economic factors,

arbovirus and Aedes aegytpi infestation index were assessed using Spearman’s and Pearson’s

correlations and regression models.

Results

Distribution of microcephaly and arbovirus infections in Brazil

During the period from 2010–2014, Brazil registered an average of 156 cases of microcephaly

per year. Surprisingly, by the end of 2015, the number of cases was 20 times higher (Fig 1A).

Pernambuco was the first state reporting the unusual number of microcephaly cases in new-

borns, with 10 times more notifications than the average for the whole country during the pre-

ceding 5 years (Fig 1B) [37]. The number of reported cases kept increasing, with 10,867

notifications reported from November 2015 until the end of 2016, from which 7,023 were reg-

istered only in the Northeast region (Fig 1B). Ongoing laboratory investigations confirmed

2,366 positive cases for congenital microcephaly suspected of Zika virus infection or other

infectious agents. Of these positive cases, molecular or serological laboratory investigations

confirmed Zika infection in 697 microcephaly cases. The top 10 Brazil Federal Units with the
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highest number of infection-related microcephaly cases includes all the 9 states from the

Northeast region and one state from the Northern Brazil (Figs 1 and 2, S1 Fig).

It was also in the Northeast region that the first cases of Zika infection were reported in

May 2015 [4]. However, a study based on the genome of Zika virus strains from Brazil and eco-

logical and epidemiological data, revealed that the Zika virus was already present in the North-

east by February 2014 [38]. By the end of 2015 there was a higher number of suspected Zika

cases in the States of Bahia, Mato Grosso, Rio Grande do Norte and Mato Grosso do Sul (Fig

3A). One year later, autochthonous cases of Zika virus infection had been confirmed in all the

27 Brazil Federal Units and more than 200,000 cases have already been registered [5] (Fig 3A).

In 2016, the analysis of the reported cases according to geographical regions shows that the

Center-West region had the highest incidence rate (222/100,000) followed by Northeast

(134.4/100,000) (Fig 3B).

Although it is now established that Zika virus is the cause of severe fetal complications in

pregnancy, including microcephaly, the distribution of reported Zika cases and infection-

related microcephaly do not overlap (Fig 3A). In fact, there is no correlation between the num-

ber of Zika reported cases per 100,000 inhabitants in 2015 or 2016 and the distribution of

infection-related microcephaly in Brazil (Parts A and D of S2 Fig) (Correlation R2� 0.25;

P� 0.212). During the same period Brazil experienced simultaneous transmission of dengue

and chikungunya. During January-September 2016, Brazil recorded 200,465 Zika cases,

236,287 chikungunya cases and 1,438,624 dengue cases [39]. It is possible that co-infection

increases the severity of symptoms, as previously shown [40]. In Brazil, few studies have

reported the co-circulation and/or co-infection of dengue, Zika, and chikungunya [19, 27, 41].

Interestingly, the number of chikungunya cases reported from 2014 to 2015 (Fig 3A) is pre-

dominant in the Northeast region. By 2016 the incidence of chikungunya virus increased in

Fig 1. Cases of microcephaly in Brazil, 2010–2016. (A) Total number of notified cases registered in Brazil, per year, from 2010 to 2016; (B) Cumulative number of

cases notified in Brazil between 2015 and 2016, per region and Federal Unit. The red line presents values for 2015 only. Notifications were performed based on specific

definitions of cephalic perimeter as described in Materials and Methods.

https://doi.org/10.1371/journal.pone.0201452.g001
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the whole country but it remained mostly concentrated in the Northeast (407.7/100,000) fol-

lowed by the North (44/100,000) region (Fig 3B). All of the 9 Federal Units from the Northeast

region recorded chikungunya cases in excess of 80 per 100,000 habitants. In addition, Amapa

and Tocantins states in the North, and Rio de Janeiro in the Southeast, also had a very high

number of reported cases (Fig 3A). There is a significant overlap in the distribution of infec-

tion-related microcephaly cases and of chikungunya infection (Part B and E of S2 Fig) (R2�

0.57; P� 0.002). There have been reports that associated chikungunya infection with an

increase in neurologic manifestations, including Guillain-Barre syndrome and encephalitis,

encephalopathy and microcephaly [42–48]. An investigation in the state of Salvador reported

the intense chikungunya transmission between June and November 2015 and the co-occur-

rence with the Guillain-Barre syndrome outbreak in the city [49]. It has also been suggested

that the local health authorities have underestimated chikungunya transmission, as attention

was focused on the Zika and microcephaly outbreaks [50].

Dengue fever has a wider distribution in Brazil. Between 2014 and 2015, the incidence of

dengue increased in almost all geographic regions, keeping similar rates during 2016 (Fig 3A).

In the last three consecutive years, the highest number of reported dengue cases has been

observed in the Center-West and Southeast regions (Fig 3B). There is no correlation between

infection-related microcephaly cases (2015–2016) and the distribution of suspected dengue

fever cases (2014–2016) (R2� 0.22, P� 0.272) (Part C and F of S2 Fig). This is consistent with

other studies of the dengue virus infection in pregnancy, where although there is evidence of

Fig 2. Distribution of infection-related microcephaly cases in Brazil, during the period 2015–2016. Cumulative number of confirmed cases of

infection-related microcephaly per 10,000 newborns in Brazil, including clinical or laboratory-confirmed Zika virus infections, during the period

2015–2016. The total number of confirmed infection-related microcephaly cases was normalized by the number of live births extracted from the

Information System on Live Births. As there was no live birth data available for 2016, we considered the average number of live births for the last

3 years, for each Brazil Federal Unit.

https://doi.org/10.1371/journal.pone.0201452.g002

Investigating co-acting risk factors for an unusual pattern of microcephaly in Brazil

PLOS ONE | https://doi.org/10.1371/journal.pone.0201452 August 15, 2018 6 / 16

https://doi.org/10.1371/journal.pone.0201452.g002
https://doi.org/10.1371/journal.pone.0201452


vertical transmission and increased risk of preterm birth and low birthweight [51], no micro-

cephaly or other congenital brain abnormalities have been reported [52].

Infection-related microcephaly, socio-economic and environmental

management factors

To evaluate the potential effect of socioeconomic factors on the incidence of Zika-suspected

microcephaly, as suggested by others [21–23, 53], we considered the Human development
index (HDI) and the poverty index calculated in 2010. The HDI values range from 0.6 to 0.8

across the country. The Northeast and North regions concentrate the Federal Units with the

lowest HDI (= 0.6) (Fig 4A). The highest poverty index is observed in the Northeast region

(43.5 to 59.5) (Fig 4B), the epicentre of microcephaly notified cases. There is a strong correla-

tion between the distribution of infection-related microcephaly cases and poverty index (Part

A of S3 Fig) (R2 = 0.68; p<0.0001).

The Northeast region also had the highest numbers of houses that accumulate garbage and

store rainwater (Fig 4C and 4D) that could lead to an increase in vector proliferation and

therefore Zika transmission. These results are consistent with a recently reported association

of an increase in Zika and chikungunya infections with garbage destination, type of sanitary

installation and pipe-borne water [54]. These environmental management indicators may

assist an understanding of the population’s behaviours, which may be responsible for increas-

ing the chances of Aedes proliferation through underlying human-driven increased mosquito

breeding. It also indicates the lack of sanitation and water distribution.

Fig 3. Reported cases of arboviruses in Brazil, per Federal Unit, 2014–2016. (A) Panel shows heat maps for the incidence of dengue, chikungunya and Zika virus

per 100,000 inhabitants, in Brazil, from 2014–2016. For the Zika virus, the heat maps start in 2015—the year when the first reports occurred, and includes all

suspicious cases, based on epidemiological data collected from Bulletins and reports from the State Secretary of Health of each Federal Unit. (B) Number of reported

cases of Zika, dengue and chikungunya in Brazil, per geographical region, during the year 2016.

https://doi.org/10.1371/journal.pone.0201452.g003
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Aedes aegyptihouse infestation index

In the Americas, the domestic behavior of Ae. aegypti makes it the most important vector for

chikungunya, Zika and dengue virus in urban and suburban areas [55, 56]. A surveillance pro-

gram of Ae. aegypti density (house infestation index) was introduced in Brazil aiming to assist

the implementation of measures for vector population control. The 2016 Ae. aegypti house

infestation index classified most of the regions in the Northeast region (Ceara, Rio Grande do

Norte, Paraiba, Pernambuco, Alagoas, Sergipe, Bahia) or in the North (Para) (Fig 4E), as being

at high risk of Ae. aegypti infestation. In fact, data on the entomological index corroborate

the findings on the environmental management in the Northeast region (Fig 4C and 4D). We

did observe a correlation across the federal Units of the risk of Ae. aegypti infestation and the

incidence of chikungunya, but not dengue or Zika (S4 Fig) (dengue: R2 = 0.01, P = 0.962; chi-

kungunya: R2 = 0.44, P = 0.020; zika: R2 = 0.25, P = 0.202). It is important to consider that

arboviral epidemics are most likely determined by multiple factors including environmental

Fig 4. Socioeconomic factors, environmental management and entomological data, per Brazil region. (A) IDH: Human development index (from 0 to 1).

Considers education (average years of studies), longevity (population life expectancy) and gross domestic product per capita. (B) Poverty index (from 0 to 100):

measures health (nutrition and child mortality), education (school attendance) and living standard (sanitation, water, electricity, cooking fuel, assets, house

conditions). (C) Peri-domicile garbage accumulation: number of houses with accumulated and not collected garbage (values per 100,000 houses). (D) Rainwater

storage: number of houses that storage rainwater using all different sort of containers (covered or not). (E) Number of Municipalities at high risk of Aedes aegypti
house infestation: based on the LIRAa survey for the year 2016, which measures the percentage of searched houses found with larvae of A. aegypti. The figure

illustrates the number of municipalities classified as high risk of infestation for that year. A, B, C and D: data from 2010, last available IBGE survey in Brazil.

https://doi.org/10.1371/journal.pone.0201452.g004
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conditions, host status and herd immunity and virus genetic mutations that might cause

changes in virulence, or vector competence [57].

Discussion

Several studies have confirmed the association of Zika infection during pregnancy and con-

genital microcephaly [58]. Since February 2017, 31 countries or territories have reported

microcephaly cases potentially associated with Zika infection [59] However, the overwhelming

level of cases in the Brazilian Northeast region has not been reported elsewhere.

During the Zika virus outbreak in Brazil there was simultaneous transmission of dengue and

chikungunya. These viral infections are transmitted by the same Aedes spp. mosquitoes and have

close clinical manifestations. In Brazil, the prediction values for the distribution and prevalence of
Ae. Aegypti, found mainly in urban environment [55], are higher than for Ae. albopictus, a pre-

dominantly peri-urban and rural vector [60–63]. A study of the geographic distribution of spatially

unique occurrence data of Aedes mosquitoes for the Americas shows that A. aegypti abundance is

1.5 times higher than for Ae. albopictus in Brazil, and with particularly high concentrations in

Northern Brazil [62]. A survey performed in 2014 revealed that Ae. Albopictus is currently present

in at least 59% of the Brazilian municipalities, particularly in the Southeast region [63].

Recent data have shown that in Brazilian urban areas there is an increase number of Zika

and chikungunya cases [54], which coincides with the Ae. aegypti strong affinity to urbanised

regions [64]. Conversely, relatively lower numbers of cases occur in forest or agricultural areas

[54]. Densely populated areas with poor water infrastructure may provide more breeding

opportunities for Ae. Aegypti [65]. In the Northeast of Brazil, over 75% of the breeding sites are

due to precarious water storage [54]. Dengue infections have also been shown to be higher in

urban areas in Thailand [66].

Although dengue, chikungunya and Zika viruses share the same vector, there was not a per-

fect overlap of their spatial and temporal distributions in Brazil. Several factors could lead to

the observed distribution, such as herd immunity, vector competence for the different viruses,

the proportion of asymptomatic cases and under notification of cases. The Center-West region

has the highest reported cases of dengue and Zika virus infections, whereas chikungunya

reported infection is much higher in the Northeast region compared to the rest of the country.

Chikungunya transmission efficiency seems to be lineage specific. Studies on Ae. aegypti and

Ae. albopictus from Florida have shown differences in vector competence depending on the

chikungunya strain. Ae. albopictus were more susceptible to infection with the La Réunion

strain than sympatric Ae. Aegypti [67]. A more recent study showed that the chikungunya

Asian strain is better transmitted by Ae. aegypti species than by Ae. albopictus, whereas the

Indian Ocean strain leads to higher body infection and transmission in Ae. albopictus mosqui-

toes [68]. In addition, virus mutations can interfere with the transmission rate, for instance, an

alanine-valine substitution at position 226 of the E1 envelope glycoprotein (E1-A226V) can

improve transmission by Ae. albopictus [69, 70] Comparative genome studies on the chikungu-

nya virus circulating in different Brazil regions could provide insights on the higher number of

chikungunya cases found in the Northeastern Brazil.

The initial epidemic of the Zika virus was also reported in the Northeast region, spreading

eventually to other states. Few studies in Brazil have reported the co-circulation and/or co-

infection of dengue, Zika, and chikungunya in the Northeast region [19, 41]. In Bahia, a small

study using metagenomic next-generation sequencing approach revealed that 13.3% of

patients with confirmed Zika virus infection were actually co-infected with chikungunya virus

[27]. Other studies worldwide have also reported co-infections with various combinations of

chikungunya/dengue and Zika in endemic and epidemic regions [71–72]. It has also been
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shown that A. aegypti mosquitoes can co-transmit all combinations of these viruses simulta-

neously without affecting vector competence [73]. The effect of co-infections in the develop-

ment of infection and disease outcome is poorly defined, particularly due to the limited

clinical information, misdiagnosis and lack of laboratory testing. However, some studies have

indicated that previous arboviral infections or co-infections may represent a risk factor for

severe clinical manifestations [26]. Pre-existing anti-dengue immunity can promote substan-

tial enhancement of Zika virus infection in vitro as well as increased morbidity and mortality

in mice [40]. Also, dengue-specific antibodies enhance the infection of a primary Brazilian

Zika isolate in K562 cell line [74]. Even though our data did not show an association of infec-

tion-related microcephaly cases and the distribution of dengue fever, it is important to note

that dengue is endemic in the Northeast region, with 573.3 reported cases per 100,000 inhabi-

tants in 2016 [39]. Dengue transmission is permanent in all regions where Zika and chikungu-

nya infection were reported [75], and there is a high probability of previous or co-infection of

dengue with either virus. In relation to the observed outbreaks of chikungunya and Zika, these

infections partially overlap by time and space [76], as described in more detail for regions in

the Northeast including Pernambuco, Recife [77, 78] and Bahia [49], indicating that previous

or co-infection of these virus is possible. It is important to note that the overlap in space-time

distribution of Zika, dengue, and chikungunya cases is challenging to report, particularly due

to the number of asymptomatic cases and the possible presence of non-specific clinical mani-

festations which are difficult to diagnose.

The pathogenic effect of Zika and chikungunya virus co-infection, or of the three viruses,

has not been studied. We observed a correlation between the distribution of chikungunya infec-

tion and the congenital microcephaly in the Northeast region, which may indicate that previous

arboviral infections or co-infection with chikungunya could increase Zika severity. Others have

linked the outbreak of Guillain-Barre syndrome, firstly related to the Zika virus outbreak in

2015 in the city of Salvador, with the concurrent intense chikungunya transmission [50]. It is

important to note that chikungunya infection can result in neurologic manifestations such as

encephalitis [79], encephalopathy [43,80], peripheral neuropathy (including Guillain-Barre syn-

drome) [46,81–82]. In addition, chikungunya virus infection may result in complications dur-

ing pregnancy either to the mother or to the newborn [83–84]. Complications for the mother,

such as chronic inflammatory rheumatism, as well as neurocognitive impairment in infants and

microcephaly have been reported in congenital chikungunya transmission [47,49,85–86].

The Northeast region of Brazil has the highest poverty index, with the lowest social eco-

nomic factors and poorest environmental management, which can be responsible for increas-

ing Aedes proliferation. Poverty can drive malnutrition and general poor health that might

affect host immunity and the response and clinical progression of an infection.

Altogether, these findings corroborate previous study that suggests that the Zika virus may

not be the only factor responsible for the high frequency of congenital microcephaly observed

in the Northeast region [55]. Here, using ecological data analysis, we highlight the possible co-

circulation of the three arboviruses, together with the socio-economic and environmental fac-

tors specific for that region. To understand the complete pathogenesis and severity of Zika

infection in the presence of other viruses and other possible co-factors, it is necessary to con-

duct comprehensive cohort studies involving large patient groups, with detailed socio-eco-

nomic and environmental factors and effective differential diagnosis for these viruses.

Limitations of the study

It is important to consider that the findings in this study are subject to at least six limitations.

Firstly, the cases of infection-related microcephaly reported in the databases include congenital
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microcephaly caused by Zika virus or other infectious agents. Therefore, it is not known if the

distribution of microcephaly cases is caused by laboratory confirmed Zika virus infection. Sec-

ondly, cases of co-infections (dengue, Zika, chikungunya) were not investigated or not

reported. Third, the ascertainment of birth defects generally does not capture infants or fetuses

whose birth defects are not apparent prenatally or at delivery, but rather are identified several

months after birth. Fourth, there was no report on Ae. albopictus distribution by the LIRAa

survey. Fifth, the molecular characterization and phylogenetic analysis of the current circulat-

ing strains of Zika, dengue and chikungunya viruses in Brazil is important, but was not possi-

ble. Sixth, these data are analyzed at a State-level, which are large regions, and differences

between smaller areas (municipalities) were not investigated. Future studies of the genomic

epidemiology of these viruses can assist with improving an understanding of the biology, dis-

ease phenotypes and transmission, and support the design of diagnostic and vaccine strategies

to control the next epidemics.

Overall, we analysed a set of robustly collected and curated data on epidemiological, envi-

ronmental and socio economic factors of all regions in Brazil. Our results support the hypothe-

sis that the high rates of microcephaly in the Northeast state in Brazil might not be due to Zika

infection alone. Our study reinforces the need for comprehensive large-scale cohort studies, as

well as public-health measures and guidance to better inform the population under the higher

risk of infection-related microcephaly in Northeast of Brazil.

Conclusions

The unusual distribution of microcephaly-Zika associated cases in Brazil is likely to be caused

by a combination of epidemiological, environmental and socio economic factors. Our work

highlights the overlap between the distribution of chikungunya infection with the co-incidence

of infection-related microcephaly in the Northeast region. It emphasizes the link between pov-

erty and the risk of disease, and the impact that poor environments can have on human health

and the spread of infections. To understand the impact of co-infection on disease outcomes,

we recommend that the list of infectious diseases screened during epidemics, particularly for

pregnant woman, is updated to include and effective differentiate arboviruses from ongoing

outbreaks or epidemics.
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S1 Fig. A map of Brazil highlighting regional divisions and Federal Units.

(JPG)

S2 Fig. Association between infection-related microcephaly and incidence of arboviruses.

Pearson’s correlation test and linear regression was used to investigate the association between

infection-related microcephaly and incidence of: Zika in 2015 (A) and 2016 (D); chikungunya

in 2015 (B) and 2016 (E); dengue in 2015 (C) and 2016 (F); all per region of Brazil, and results

were considered significant for P<0.05.

(JPG)

S3 Fig. The correlation between infection-related microcephaly and poverty index. Micro-

cephaly versus poverty index. Results were considered significant when P<0.05.

(JPG)

S4 Fig. The correlation between Aedes aegypti infestation risk (LIRAa) and arboviruses

incidence in the year 2016. The number of municipalities at high risk of A. aegypti infestation,

per Brazil Federal Unit, versus incidence of dengue (A), chikungunya (B) and Zika (C). Linear
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22. Gardner LM, Bóta A, Gangavarapu K, Kraemer MUG, Grubaugh ND. Inferring the risk factors behind

the geographical spread and transmission of Zika in the Americas. PLoS Negl Trop Dis. 2018; 12(1):

e0006194. https://doi.org/10.1371/journal.pntd.0006194 PMID: 29346387

23. Human Rights Watch, Neglected and Unprotected: The Impact of the Zika Outbreak on Women and

Girls in Northeastern Brazil, 12 July 2017, available at: http://www.refworld.org/docid/59671dcb4.html

[accessed 16 February 2018].

24. Ali S, Gugliemini O, Harber S, Harrison A, Houle L, Ivory J, et al. Environmental and Social Change

Drive the Explosive Emergence of Zika Virus in the Americas. PLoS Negl Trop Dis. 2017; 11(2):

e0005135. https://doi.org/10.1371/journal.pntd.0005135 PMID: 28182667

25. Pelizzo G, Calcaterra V, Fusillo M, Nakib G, Ierullo AM, Alfei A, et al. Malnutrition in pregnancy following

bariatric surgery: three clinical cases of fetal neural defects. Nutr J. 2014; 13:59. https://doi.org/10.

1186/1475-2891-13-59 PMID: 24929556

26. Paul LM, Carlin ER, Jenkins MM, Tan AL, Barcellona CM, Nicholson CO, et al. Dengue virus antibodies

enhance Zika virus infection. Clin Transl Immunology. 2016; 5(12):e117.

27. Sardi SI, Somasekar S, Naccache SN, Bandeira AC, Tauro LB, Campos GS et al. Coinfections of Zika

and Chikungunya Viruses in Bahia, Brazil, Identified by Metagenomic Next-Generation Sequencing. J

Clin Microbiol. 2016; 54(9):2348–53. https://doi.org/10.1128/JCM.00877-16 PMID: 27413190
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